Yanwei Fan , Ruize Dong , Yongkang Luo , Yuqing Tan , Hui Hong , Zengtao Ji , Ce Shi
{"title":"Deep learning models with optimized fluorescence spectroscopy to advance freshness of rainbow trout predicting under nonisothermal storage conditions","authors":"Yanwei Fan , Ruize Dong , Yongkang Luo , Yuqing Tan , Hui Hong , Zengtao Ji , Ce Shi","doi":"10.1016/j.foodchem.2024.139774","DOIUrl":null,"url":null,"abstract":"<div><p>This study established long short-term memory (LSTM), convolution neural network long short-term memory (CNN_LSTM), and radial basis function neural network (RBFNN) based on optimized excitation-emission matrix (EEM) from fish eye fluid to predict freshness changes of rainbow trout under nonisothermal storage conditions. The method of residual analysis, core consistency diagnostics, and split-half analysis of parallel factor analysis was used to optimize EEM data, and two characteristic components were extracted. LSTM, CNN_LSTM, and RBFNN models based on characteristic components of EEM used to predict the freshness indices. The results demonstrated the relative errors of RBFNN models with an R<sup>2</sup> above 0.96 and relative errors less than 10% for K-value, total viable counts, and volatile base nitrogen, which were better than those of LSTM and CNN_LSTM models. This study presents a novel approach for predicting the freshness of rainbow trout under nonisothermal storage conditions.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"454 ","pages":"Article 139774"},"PeriodicalIF":8.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624014249","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study established long short-term memory (LSTM), convolution neural network long short-term memory (CNN_LSTM), and radial basis function neural network (RBFNN) based on optimized excitation-emission matrix (EEM) from fish eye fluid to predict freshness changes of rainbow trout under nonisothermal storage conditions. The method of residual analysis, core consistency diagnostics, and split-half analysis of parallel factor analysis was used to optimize EEM data, and two characteristic components were extracted. LSTM, CNN_LSTM, and RBFNN models based on characteristic components of EEM used to predict the freshness indices. The results demonstrated the relative errors of RBFNN models with an R2 above 0.96 and relative errors less than 10% for K-value, total viable counts, and volatile base nitrogen, which were better than those of LSTM and CNN_LSTM models. This study presents a novel approach for predicting the freshness of rainbow trout under nonisothermal storage conditions.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.