Cr3+ activated Na3RESi3O9 (RE = Y, Lu, Sc) silicate broadband near-infrared phosphors for luminescence towards NIR-II region via a multi-site occupancy strategy
{"title":"Cr3+ activated Na3RESi3O9 (RE = Y, Lu, Sc) silicate broadband near-infrared phosphors for luminescence towards NIR-II region via a multi-site occupancy strategy","authors":"","doi":"10.1016/j.jre.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphor-converted near-infrared light-emitting diodes (NIR pc-LEDs) are finding applications in various fields including food quality analysis, biomedical imaging, night vision, and biomedicine. The crucial factor in the development of NIR pc-LEDs devices lies in the advancement of high-performance broadband NIR phosphors. In this work, novel Cr<sup>3+</sup>-activated silicate phosphors NaRESi<sub>3</sub>O<sub>9</sub> (RE = Y, Lu, Sc) are reported. This silicate has a special 3D network structure in which RE has four different sites, forming four octahedrons and providing suitable occupation sites for Cr<sup>3+</sup>. The phosphors demonstrate a wide emission spectrum ranging from 750 to 1450 nm when excited by light at 468 nm. The full width at half maximum (FWHM), which benefits from the presence of Cr<sup>3+</sup> ions occupying multiple sites, is measured to be 203 nm. Notably, the strongest emission peak is observed at a longer wavelength of 984 nm compared to most other systems activated by Cr<sup>3+</sup>. The Na<sub>3</sub>ScSi<sub>3</sub>O<sub>9</sub> lattice provides a weak crystal field (<em>Dq</em>/<em>B</em> = 1.97) and weak phonon-photon coupling for Cr<sup>3+</sup>, and the integrated emission intensity of Na<sub>3</sub>ScSi<sub>3</sub>O<sub>9</sub>:0.03Cr<sup>3+</sup> is 4.66 times stronger than that of Na<sub>3</sub>YSi<sub>3</sub>O<sub>9</sub>:0.03Cr<sup>3+</sup>.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1447-1457"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072124001601","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphor-converted near-infrared light-emitting diodes (NIR pc-LEDs) are finding applications in various fields including food quality analysis, biomedical imaging, night vision, and biomedicine. The crucial factor in the development of NIR pc-LEDs devices lies in the advancement of high-performance broadband NIR phosphors. In this work, novel Cr3+-activated silicate phosphors NaRESi3O9 (RE = Y, Lu, Sc) are reported. This silicate has a special 3D network structure in which RE has four different sites, forming four octahedrons and providing suitable occupation sites for Cr3+. The phosphors demonstrate a wide emission spectrum ranging from 750 to 1450 nm when excited by light at 468 nm. The full width at half maximum (FWHM), which benefits from the presence of Cr3+ ions occupying multiple sites, is measured to be 203 nm. Notably, the strongest emission peak is observed at a longer wavelength of 984 nm compared to most other systems activated by Cr3+. The Na3ScSi3O9 lattice provides a weak crystal field (Dq/B = 1.97) and weak phonon-photon coupling for Cr3+, and the integrated emission intensity of Na3ScSi3O9:0.03Cr3+ is 4.66 times stronger than that of Na3YSi3O9:0.03Cr3+.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.