Identifying and recommending taxi hotspots in spatio-temporal space

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Geoinformatica Pub Date : 2024-05-25 DOI:10.1007/s10707-024-00524-w
Saurabh Mishra, Sonia Khetarpaul
{"title":"Identifying and recommending taxi hotspots in spatio-temporal space","authors":"Saurabh Mishra, Sonia Khetarpaul","doi":"10.1007/s10707-024-00524-w","DOIUrl":null,"url":null,"abstract":"<p>The GPS-driven mobile application-based ride-hailing systems, e.g., Uber and Ola, have become integral to daily life and natural transport choices for urban commuters. However, there is an imbalance between demand or pick-up requests and supply or drop-off requests in any area. The city planners and the researchers are working hard to balance this gap in demand and supply situation for taxi requests. The existing approaches have mainly focused on clustering the spatial regions to identify the hotspots, which refer to the locations with a high demand for pick-up requests. This study determined that if the hotspots focus on clustering high demand for pick-up requests, most of the hotspots pivot near the city center or in the two-three spatial regions, ignoring the other parts of the city. This paper (An earlier version of this paper was presented at the Australasian Database Conference and was published in its Proceedings: https://link.springer.com/chapter/10.1007/978-3-030-69377-0_10) presents a hotspot detection method that uses a dominating set problem-based solution in spatial-temporal space, which covers high-density taxi pick-up demand regions and covers those parts of the city with a moderate density of taxi pick-up demands during different hours of the day. The paper proposes algorithms based on <i>k</i>-hop dominating set; their performance is evaluated using real-world datasets and proves the edge over the existing state-of-the-art methods. It will also reduce the waiting time for customers and drivers looking for their subsequent pick-up requests. Therefore, this would maximize their profit and help improve their services.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-024-00524-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The GPS-driven mobile application-based ride-hailing systems, e.g., Uber and Ola, have become integral to daily life and natural transport choices for urban commuters. However, there is an imbalance between demand or pick-up requests and supply or drop-off requests in any area. The city planners and the researchers are working hard to balance this gap in demand and supply situation for taxi requests. The existing approaches have mainly focused on clustering the spatial regions to identify the hotspots, which refer to the locations with a high demand for pick-up requests. This study determined that if the hotspots focus on clustering high demand for pick-up requests, most of the hotspots pivot near the city center or in the two-three spatial regions, ignoring the other parts of the city. This paper (An earlier version of this paper was presented at the Australasian Database Conference and was published in its Proceedings: https://link.springer.com/chapter/10.1007/978-3-030-69377-0_10) presents a hotspot detection method that uses a dominating set problem-based solution in spatial-temporal space, which covers high-density taxi pick-up demand regions and covers those parts of the city with a moderate density of taxi pick-up demands during different hours of the day. The paper proposes algorithms based on k-hop dominating set; their performance is evaluated using real-world datasets and proves the edge over the existing state-of-the-art methods. It will also reduce the waiting time for customers and drivers looking for their subsequent pick-up requests. Therefore, this would maximize their profit and help improve their services.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空空间中出租车热点的识别与推荐
基于全球定位系统(GPS)的移动应用叫车系统,如 Uber 和 Ola,已成为城市通勤者日常生活中不可或缺的自然交通选择。然而,任何地区的需求或接送请求与供给或送客请求之间都存在着不平衡。城市规划者和研究人员正在努力平衡出租车需求和供给之间的差距。现有的方法主要集中在对空间区域进行聚类,以识别热点区域,即对接送请求需求较高的地点。本研究认为,如果将热点集中在接客需求高的聚类上,则大部分热点都集中在市中心附近或二三空间区域,而忽略了城市的其他部分。本文(本文的早期版本曾在澳大拉西亚数据库会议上发表,并发表在其论文集中:https://link.springer.com/chapter/10.1007/978-3-030-69377-0_10)提出了一种热点检测方法,该方法在时空空间中使用基于支配集问题的解决方案,覆盖了高密度出租车接客需求区域,并覆盖了一天中不同时段出租车接客需求密度适中的城市部分。本文提出了基于 k 跳占优集的算法,并利用实际数据集对其性能进行了评估,证明其优于现有的先进方法。它还将减少客户和司机寻找后续接送请求的等待时间。因此,这将使他们的利润最大化,并有助于改善他们的服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoinformatica
Geoinformatica 地学-计算机:信息系统
CiteScore
5.60
自引率
10.00%
发文量
25
审稿时长
6 months
期刊介绍: GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds. This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.
期刊最新文献
LENS: label sparsity-tolerant adversarial learning on spatial deceptive reviews A case study of spatiotemporal forecasting techniques for weather forecasting CLMTR: a generic framework for contrastive multi-modal trajectory representation learning Periodicity aware spatial-temporal adaptive hypergraph neural network for traffic forecasting ICN: Interactive convolutional network for forecasting travel demand of shared micromobility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1