{"title":"Initial Experience of NIR-II Fluorescence Imaging-Guided Surgery in Foot and Ankle Surgery","authors":"","doi":"10.1016/j.eng.2024.04.011","DOIUrl":null,"url":null,"abstract":"<div><p>Optical imaging in the second near-infrared (NIR-II; 900–1880 nm) window is currently a popular research topic in the field of biomedical imaging. This study aimed to explore the application value of NIR-II fluorescence imaging in foot<!--> <!-->and<!--> <!-->ankle surgeries. A lab-established NIR-II fluorescence surgical navigation system was developed and used to navigate foot and ankle surgeries which enabled obtaining more high-spatial-frequency information and a higher signal-to-background ratio (SBR) in NIR-II fluorescence images compared to NIR-I fluorescence images; our result demonstrates that NIR-II imaging could provide higher-contrast and larger-depth images to surgeons. Three types of clinical application<!--> <!-->scenarios (diabetic foot, calcaneal fracture, and lower extremity trauma) were included in this study. Using the NIR-II fluorescence imaging technique, we observed the ischemic region in the diabetic foot before morphological<!--> <!-->alterations, accurately determined the boundary of the ischemic region in the surgical incision, and fully assessed the blood supply condition of the flap. NIR-II fluorescence imaging can help surgeons precisely judge surgical margins, detect ischemic lesions early, and dynamically trace the perfusion process. We believe that portable and reliable NIR-II fluorescence imaging equipment and additional functional fluorescent probes can play crucial roles in precision surgery.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209580992400242X/pdfft?md5=7abefbf8a70f6ef0500be63c9e26f7e8&pid=1-s2.0-S209580992400242X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209580992400242X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical imaging in the second near-infrared (NIR-II; 900–1880 nm) window is currently a popular research topic in the field of biomedical imaging. This study aimed to explore the application value of NIR-II fluorescence imaging in foot and ankle surgeries. A lab-established NIR-II fluorescence surgical navigation system was developed and used to navigate foot and ankle surgeries which enabled obtaining more high-spatial-frequency information and a higher signal-to-background ratio (SBR) in NIR-II fluorescence images compared to NIR-I fluorescence images; our result demonstrates that NIR-II imaging could provide higher-contrast and larger-depth images to surgeons. Three types of clinical application scenarios (diabetic foot, calcaneal fracture, and lower extremity trauma) were included in this study. Using the NIR-II fluorescence imaging technique, we observed the ischemic region in the diabetic foot before morphological alterations, accurately determined the boundary of the ischemic region in the surgical incision, and fully assessed the blood supply condition of the flap. NIR-II fluorescence imaging can help surgeons precisely judge surgical margins, detect ischemic lesions early, and dynamically trace the perfusion process. We believe that portable and reliable NIR-II fluorescence imaging equipment and additional functional fluorescent probes can play crucial roles in precision surgery.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.