Structural Insight into the Binding Pattern and Interaction Mechanism of Antagonist MCC950 and Agonist BMS986299 with NLRP3 by Molecular Dynamics Simulation.

Ruifeng Zhang, Xin Xiong, Zhenli Min
{"title":"Structural Insight into the Binding Pattern and Interaction Mechanism of Antagonist MCC950 and Agonist BMS986299 with NLRP3 by Molecular Dynamics Simulation.","authors":"Ruifeng Zhang, Xin Xiong, Zhenli Min","doi":"10.2174/0115734099313497240514072445","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The NLRP3 inflammasome mediates a range of inflammatory responses that are associated with an increasing number of pathological mechanisms. Over-activation of NLRP3 can exacerbate many diseases. However, NLRP3 antagonists have significant therapeutic potential. Moreover, NLRP3 plays an important role in limiting the growth and spread of some tumors, and NLRP3 agonists also have clinical value. MCC950 and BMS986299 are an antagonist and agonist of NLRP3, respectively. In light of the important clinical applications of NLRP3, especially for NLRP3 inhibitors, a computational method was used to investigate the interaction modes of MCC950 and BMS986299 with NLRP3 in order to design and develop more potent NLRP3 regulators.</p><p><strong>Methods: </strong>In this study, the conformational behaviors of NLRP3 bound to the antagonist MCC950 in an inactive state and the agonist BMS986299 in an active state were investigated using 200 ns equilibrium all-atom molecular dynamics (MD) simulations, and then the analyses of the MD trajectories (RMSD, Rg, RMSF, SASA, PCA, and DCCM) were carried out to explore the mechanism of the antagonist and agonist on NLRP3 in the two different states.</p><p><strong>Results: </strong>The RMSD, RMSF, Rg, SASA, and PCA analyses indicated that NLRP3 was more dispersive and less energetically stable in the active state than in the inactive state and that MCC950 significantly reduced the fluctuations of the interactive residues while BMS986299 did not. The antagonist MCC950 interacted with residues mainly in the NBD, HD1, WHD, and HD2 domains of NLRP3, whereas the agonist BMS986299 mainly in the NBD and WHD of NLRP3. Additionally, both compounds did not interact with residues located in the FISNA domain. The conformation of the FISNA domain appeared to change significantly when NLRP3 was translated from an inactive state to an active state.</p><p><strong>Conclusion: </strong>The antagonist may interact with residues mainly in the NBD, HD1, WHD, and HD2 domains, and the agonist may interact in the NBD and WHD domains. Our study provided new insights into the development of NLRP3 regulators.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099313497240514072445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The NLRP3 inflammasome mediates a range of inflammatory responses that are associated with an increasing number of pathological mechanisms. Over-activation of NLRP3 can exacerbate many diseases. However, NLRP3 antagonists have significant therapeutic potential. Moreover, NLRP3 plays an important role in limiting the growth and spread of some tumors, and NLRP3 agonists also have clinical value. MCC950 and BMS986299 are an antagonist and agonist of NLRP3, respectively. In light of the important clinical applications of NLRP3, especially for NLRP3 inhibitors, a computational method was used to investigate the interaction modes of MCC950 and BMS986299 with NLRP3 in order to design and develop more potent NLRP3 regulators.

Methods: In this study, the conformational behaviors of NLRP3 bound to the antagonist MCC950 in an inactive state and the agonist BMS986299 in an active state were investigated using 200 ns equilibrium all-atom molecular dynamics (MD) simulations, and then the analyses of the MD trajectories (RMSD, Rg, RMSF, SASA, PCA, and DCCM) were carried out to explore the mechanism of the antagonist and agonist on NLRP3 in the two different states.

Results: The RMSD, RMSF, Rg, SASA, and PCA analyses indicated that NLRP3 was more dispersive and less energetically stable in the active state than in the inactive state and that MCC950 significantly reduced the fluctuations of the interactive residues while BMS986299 did not. The antagonist MCC950 interacted with residues mainly in the NBD, HD1, WHD, and HD2 domains of NLRP3, whereas the agonist BMS986299 mainly in the NBD and WHD of NLRP3. Additionally, both compounds did not interact with residues located in the FISNA domain. The conformation of the FISNA domain appeared to change significantly when NLRP3 was translated from an inactive state to an active state.

Conclusion: The antagonist may interact with residues mainly in the NBD, HD1, WHD, and HD2 domains, and the agonist may interact in the NBD and WHD domains. Our study provided new insights into the development of NLRP3 regulators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子动力学模拟揭示拮抗剂 MCC950 和激动剂 BMS986299 与 NLRP3 的结合模式和相互作用机制。
目的:NLRP3 炎性体介导一系列炎症反应,这些反应与越来越多的病理机制有关。NLRP3 的过度激活会加重许多疾病。然而,NLRP3 拮抗剂具有巨大的治疗潜力。此外,NLRP3 在限制某些肿瘤的生长和扩散方面发挥着重要作用,NLRP3 激动剂也具有临床价值。MCC950 和 BMS986299 分别是 NLRP3 的拮抗剂和激动剂。鉴于NLRP3在临床上的重要应用,尤其是NLRP3抑制剂,本研究采用计算方法研究了MCC950和BMS986299与NLRP3的相互作用模式,以设计和开发更有效的NLRP3调节剂:本研究采用200 ns平衡全原子分子动力学(MD)模拟,研究了NLRP3在非活性状态下与拮抗剂MCC950和活性状态下与激动剂BMS986299结合的构象行为,然后对MD轨迹(RMSD、Rg、RMSF、SASA、PCA和DCCM)进行分析,探讨了拮抗剂和激动剂在两种不同状态下对NLRP3的作用机制:RMSD、RMSF、Rg、SASA和PCA分析表明,与非活性状态相比,NLRP3在活性状态下更分散,能量稳定性更低,MCC950显著降低了相互作用残基的波动,而BMS986299则没有。拮抗剂 MCC950 主要与 NLRP3 的 NBD、HD1、WHD 和 HD2 结构域中的残基相互作用,而激动剂 BMS986299 则主要与 NLRP3 的 NBD 和 WHD 结构域中的残基相互作用。此外,这两种化合物均未与位于 FISNA 结构域的残基发生相互作用。当 NLRP3 从非活性状态转化为活性状态时,FISNA 结构域的构象似乎发生了显著变化:结论:拮抗剂可能主要与 NBD、HD1、WHD 和 HD2 结构域中的残基相互作用,而激动剂可能与 NBD 和 WHD 结构域中的残基相互作用。我们的研究为 NLRP3 调节剂的发展提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding the Knacks of Ellagitannin Lead Compounds to Treat Nonalcoholic Fatty Liver Disease using Computer-aided Drug Designing. In silico Discovery of Leptukalins, The New Potassium Channel Blockers from the Iranian Scorpion, Hemiscorpius Lepturus. Hybrid Class Balancing Approach for Chemical Compound Toxicity Prediction. Computational Exploration of Isatin Derivatives for InhA Inhibition in Tuberculosis: Molecular Docking, MD Simulations and ADMET Insights. Mechanisms Underlying the Protective Effects of Obeticholic Acid-Activated FXR in Valproic Acid-Induced Hepatotoxicity via Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1