Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Gynostemma pentaphylla against Acute Pharyngitis.

Juan Zhong, Xiaozhong Wu, Chunxi Huang, Yongqiang Li, Min Huang, Liuyan Xu, Jianfeng Lu, Lili Pang, Qiuju Huang, Jing Chen
{"title":"Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Gynostemma pentaphylla against Acute Pharyngitis.","authors":"Juan Zhong, Xiaozhong Wu, Chunxi Huang, Yongqiang Li, Min Huang, Liuyan Xu, Jianfeng Lu, Lili Pang, Qiuju Huang, Jing Chen","doi":"10.2174/0115734099324793250116133159","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute pharyngitis (AP) is a prevalent ailment. Gynostemma pentaphylla (GP), a traditional Chinese medicine (TCM), may treat AP due to its anti-tumor and anti-inflammatory properties, but this remains unexplored.</p><p><strong>Methods: </strong>This study utilized the TCMSP and Swiss Target Prediction databases to analyze GP's chemical composition and target proteins. The Genecards database was used to identify targets relevant to AP. A PPI network diagram of drug-disease intersection targets was created using the STRING database, and Cytoscape was utilized to create a network visualization diagram of \"GP active components-targets-AP\" in order to determine key active components of GP in treating AP. Gene ontology (GO) and biological pathway (KEGG) enrichment analyses were conducted on targets in the David database. Molecular docking verification of key targets and components was performed using AutoDock Vina software. In animal experiments, a rat model of AP was induced by a 15% concentrated ammonia solution, and HE staining was conducted to observe histopathological changes in the rat pharynx after intragastric administration of Houyanqing. ELISA was used to detect expression levels of serum interleukin-1-beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α).</p><p><strong>Results: </strong>A total of 18 active ingredients were screened from GP, among which Ruvoside _ qt, Rhamnazin, 3 ' -methyleriodictyol, and sitosterol were five key active ingredients. The key targets involved EGFR, STAT3, MAPK3, SRC, AKT1, etc. KEGG enrichment analysis showed that GP mainly acted on Pathways in cancer, P13K-AKT signaling Pathways, JAK-STAT signaling pathways, and other signaling pathways. Molecular docking results showed that four core compounds and five key targets met the energy matching. Animal experiments showed that compared with the normal group, the expression levels of IL-1β, IL-6, and TNF-α in the AP model group were significantly up-regulated (P < 0.05). In addition, compared with the model group, intragastric administration of the dexamethasone group and gypenosides group could alleviate the up-regulation of inflammatory factors in model rats, and the levels of IL-1β, IL-6, and TNF-α were decreased (P < 0.05).</p><p><strong>Conclusion: </strong>This study predicted the possible targets of GP in the treatment of AP through network pharmacology. The results suggest that gypenosides may inhibit the expression of inflammatory factors by regulating Pathways in cancer, P13K-AKT, and JAK-STAT signaling pathways to treat AP.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099324793250116133159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute pharyngitis (AP) is a prevalent ailment. Gynostemma pentaphylla (GP), a traditional Chinese medicine (TCM), may treat AP due to its anti-tumor and anti-inflammatory properties, but this remains unexplored.

Methods: This study utilized the TCMSP and Swiss Target Prediction databases to analyze GP's chemical composition and target proteins. The Genecards database was used to identify targets relevant to AP. A PPI network diagram of drug-disease intersection targets was created using the STRING database, and Cytoscape was utilized to create a network visualization diagram of "GP active components-targets-AP" in order to determine key active components of GP in treating AP. Gene ontology (GO) and biological pathway (KEGG) enrichment analyses were conducted on targets in the David database. Molecular docking verification of key targets and components was performed using AutoDock Vina software. In animal experiments, a rat model of AP was induced by a 15% concentrated ammonia solution, and HE staining was conducted to observe histopathological changes in the rat pharynx after intragastric administration of Houyanqing. ELISA was used to detect expression levels of serum interleukin-1-beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α).

Results: A total of 18 active ingredients were screened from GP, among which Ruvoside _ qt, Rhamnazin, 3 ' -methyleriodictyol, and sitosterol were five key active ingredients. The key targets involved EGFR, STAT3, MAPK3, SRC, AKT1, etc. KEGG enrichment analysis showed that GP mainly acted on Pathways in cancer, P13K-AKT signaling Pathways, JAK-STAT signaling pathways, and other signaling pathways. Molecular docking results showed that four core compounds and five key targets met the energy matching. Animal experiments showed that compared with the normal group, the expression levels of IL-1β, IL-6, and TNF-α in the AP model group were significantly up-regulated (P < 0.05). In addition, compared with the model group, intragastric administration of the dexamethasone group and gypenosides group could alleviate the up-regulation of inflammatory factors in model rats, and the levels of IL-1β, IL-6, and TNF-α were decreased (P < 0.05).

Conclusion: This study predicted the possible targets of GP in the treatment of AP through network pharmacology. The results suggest that gypenosides may inhibit the expression of inflammatory factors by regulating Pathways in cancer, P13K-AKT, and JAK-STAT signaling pathways to treat AP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Gynostemma pentaphylla against Acute Pharyngitis. Qi-Gui-Jian-Gu Decoction Accelerates Osteogenesis and Fracture Healing by Activating the Wnt/β-Catenin Signaling Pathway. Comparative Study on Sedative and Hypnotic Effects of Crude and Parched Semen Ziziphi Spinosae: Integration of Network Pharmacology and In Vivo Pharmacological Evaluation. Computational Evaluation of Punica granatum Leaf Phytochemicals against Multi-drug Resistant E. coli: Molecular Docking, ADMET, MD Simulation, and DFT Studies. Identification of a ceRNA Network Regulating Malignant Transformation of Isocitrate Dehydrogenase Mutant Astrocytoma: An Integrated Bioinformatics Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1