{"title":"Methodology for the assessment of the friction torque of ball slewing bearings considering preload scatter","authors":"Iñigo Escanciano, Iker Heras, Florian Schleich, Josu Aguirrebeitia","doi":"10.1007/s40544-024-0867-6","DOIUrl":null,"url":null,"abstract":"<p>This manuscript presents an innovative methodology for the assessment of the friction torque of ball slewing bearings. The methodology aims to overcome the limitations of state-of-the-art approaches, especially when the friction torque is conditioned by the preload of the balls. To this end, the authors propose to simulate the preload scatter when solving the load distribution problem, prior to the friction torque calculation. This preload scatter allows to simulate a progressive transition of the balls from a four-point contact state to a two-point contact one. By implementing this capability into an analytical model, the authors achieve a successful correlation with experimental results. Nonetheless, depending on the stiffness of the structures to which the bearing is assembled, it is demonstrated that the rigid ring assumption can lead to inaccurate friction torque results when a tilting moment is applied. The methodology described in this research work is meant to have a practical application. Therefore, the manuscript provides guidelines about how to use and tune the analytical model to get a reliable friction torque prediction tool.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"25 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0867-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This manuscript presents an innovative methodology for the assessment of the friction torque of ball slewing bearings. The methodology aims to overcome the limitations of state-of-the-art approaches, especially when the friction torque is conditioned by the preload of the balls. To this end, the authors propose to simulate the preload scatter when solving the load distribution problem, prior to the friction torque calculation. This preload scatter allows to simulate a progressive transition of the balls from a four-point contact state to a two-point contact one. By implementing this capability into an analytical model, the authors achieve a successful correlation with experimental results. Nonetheless, depending on the stiffness of the structures to which the bearing is assembled, it is demonstrated that the rigid ring assumption can lead to inaccurate friction torque results when a tilting moment is applied. The methodology described in this research work is meant to have a practical application. Therefore, the manuscript provides guidelines about how to use and tune the analytical model to get a reliable friction torque prediction tool.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.