Two-stage nonparametric framework for missing data imputation, uncertainty quantification, and incorporation in system identification

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-05-26 DOI:10.1111/mice.13237
Wen-Jing Zhang, Ka-Veng Yuen, Wang-Ji Yan
{"title":"Two-stage nonparametric framework for missing data imputation, uncertainty quantification, and incorporation in system identification","authors":"Wen-Jing Zhang, Ka-Veng Yuen, Wang-Ji Yan","doi":"10.1111/mice.13237","DOIUrl":null,"url":null,"abstract":"In many engineering applications, missing data during system identification can hinder the performance of the identified model. In this paper, a novel two-stage nonparametric framework is proposed for missing data imputation, uncertainty quantification, and its integration in system identification with reduced computational complexity. The framework does not require functional forms for both the imputation model and the identified mathematical model. Moreover, through the construction of a single imputation model, analytical expressions of predictive distributions can be given for missing entries across all missingness patterns. Furthermore, analytical expressions of the expectation and variance of distribution are provided to impute missing values and quantify uncertainty, respectively. This uncertainty is incorporated into a single mathematical model by mitigating the influence of samples with imputations during training and testing. The framework is applied to three applications, including a simulated example and two real applications on structural health monitoring and seismic attenuation modeling. Results reveal a minimum reduction of 21% in root mean squared error values, compared to those achieved by directly removing incomplete samples.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13237","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In many engineering applications, missing data during system identification can hinder the performance of the identified model. In this paper, a novel two-stage nonparametric framework is proposed for missing data imputation, uncertainty quantification, and its integration in system identification with reduced computational complexity. The framework does not require functional forms for both the imputation model and the identified mathematical model. Moreover, through the construction of a single imputation model, analytical expressions of predictive distributions can be given for missing entries across all missingness patterns. Furthermore, analytical expressions of the expectation and variance of distribution are provided to impute missing values and quantify uncertainty, respectively. This uncertainty is incorporated into a single mathematical model by mitigating the influence of samples with imputations during training and testing. The framework is applied to three applications, including a simulated example and two real applications on structural health monitoring and seismic attenuation modeling. Results reveal a minimum reduction of 21% in root mean squared error values, compared to those achieved by directly removing incomplete samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于缺失数据估算、不确定性量化和纳入系统识别的两阶段非参数框架
在许多工程应用中,系统识别过程中的缺失数据会影响识别模式的性能。本文提出了一个新颖的两阶段非参数框架,用于缺失数据估算、不确定性量化及其在系统识别中的集成,并降低了计算复杂度。该框架不需要估算模型和识别数学模型的函数形式。此外,通过构建单一的估算模型,可以给出所有缺失模式下缺失条目的预测分布的分析表达式。此外,还提供了分布的期望值和方差的分析表达式,以分别估算缺失值和量化不确定性。在训练和测试过程中,通过减轻样本的影响,将这种不确定性纳入到一个数学模型中。该框架适用于三个应用,包括一个模拟示例和两个实际应用,分别涉及结构健康监测和地震衰减建模。结果显示,与直接去除不完整样本相比,均方根误差值至少减少了 21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation Multifidelity graph neural networks for efficient and accurate mesh‐based partial differential equations surrogate modeling A domain adaptation methodology for enhancing the classification of structural condition states in continuously monitored historical domes Integrated vision language and foundation model for automated estimation of building lowest floor elevation Bridge damage identification based on synchronous statistical moment theory of vehicle–bridge interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1