Guillaume H C Duprez, Benoit P Delhaye, Laurent Delannay
{"title":"Collagen Induces Anisotropy in Fingertip Subcutaneous Tissues During Contact.","authors":"Guillaume H C Duprez, Benoit P Delhaye, Laurent Delannay","doi":"10.1109/TOH.2024.3406251","DOIUrl":null,"url":null,"abstract":"<p><p>The subcutaneous mechanical response of the fingertip is highly anisotropic due to the presence of a network of collagen fibers linking the outer skin layer to the bone. The impact of this anisotropy on the fingerpad deformation, which had not been studied until now, is here demonstrated using a two-dimensional finite element model of a transverse section of the finger. Different distributions of fiber orientations are considered: radial (physiologic), circumferential, and random (isotropic). The three variants of the model are assessed using experimental observations of a finger pressed on a flat surface. Predictions relying on the physiological orientation of fibers best reproduce experimental trends. Our results show that the orientation of fibers significantly influences the distribution of internal strains and stresses. This leads to a sudden change in the profile of contact pressure when transitioning from sticking to slipping. Interpreted in terms of tactile perception or sensation, these variations might represent important sensory cues for partial slip detection. This is also valuable information for the development of haptic devices.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3406251","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
The subcutaneous mechanical response of the fingertip is highly anisotropic due to the presence of a network of collagen fibers linking the outer skin layer to the bone. The impact of this anisotropy on the fingerpad deformation, which had not been studied until now, is here demonstrated using a two-dimensional finite element model of a transverse section of the finger. Different distributions of fiber orientations are considered: radial (physiologic), circumferential, and random (isotropic). The three variants of the model are assessed using experimental observations of a finger pressed on a flat surface. Predictions relying on the physiological orientation of fibers best reproduce experimental trends. Our results show that the orientation of fibers significantly influences the distribution of internal strains and stresses. This leads to a sudden change in the profile of contact pressure when transitioning from sticking to slipping. Interpreted in terms of tactile perception or sensation, these variations might represent important sensory cues for partial slip detection. This is also valuable information for the development of haptic devices.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.