Reduction in the Tropical High Cloud Fraction in Response to an Indirect Weakening of the Hadley Cell

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-05-28 DOI:10.1029/2023MS003985
S. R. Monisha Natchiar, Mark J. Webb, F. Hugo Lambert, Geoffrey K. Vallis, Cyril J. Morcrette, Christopher E. Holloway, Denis E. Sergeev, Ian Boutle
{"title":"Reduction in the Tropical High Cloud Fraction in Response to an Indirect Weakening of the Hadley Cell","authors":"S. R. Monisha Natchiar,&nbsp;Mark J. Webb,&nbsp;F. Hugo Lambert,&nbsp;Geoffrey K. Vallis,&nbsp;Cyril J. Morcrette,&nbsp;Christopher E. Holloway,&nbsp;Denis E. Sergeev,&nbsp;Ian Boutle","doi":"10.1029/2023MS003985","DOIUrl":null,"url":null,"abstract":"<p>Tropical high cloud cover decreases with surface warming in most general circulation models. This reduction, according to the “stability-iris” hypothesis, is thermodynamically controlled and linked to a decrease in the radiatively-driven clear-sky convergence, when the peak anvil clouds rise because of the rising isotherms. The influence of the large-scale dynamical changes on the tropical high cloud fraction remains difficult to disentangle from the local thermodynamic influence, given that the mean meridional circulation remains inextricably tied to the local thermodynamic structure of the atmosphere. However, using idealized general circulation model simulations, we propose a novel method to segregate the dynamical impact from the thermodynamic impact on the tropical high cloud fraction. To this end, our investigation primarily focuses on the mechanisms underpinning changes in the high cloud cover in the deep tropics in response to extratropical surface warming, when the tropical sea surface temperatures remain invariant. Net convective detrainment of ice cloud condensates decreases at the peak detrainment region, without a rise in its altitude. We also find that the importance of depositional growth of ice cloud condensates in controlling the high cloud fraction response in the deep tropics varies with altitude.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003985","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003985","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tropical high cloud cover decreases with surface warming in most general circulation models. This reduction, according to the “stability-iris” hypothesis, is thermodynamically controlled and linked to a decrease in the radiatively-driven clear-sky convergence, when the peak anvil clouds rise because of the rising isotherms. The influence of the large-scale dynamical changes on the tropical high cloud fraction remains difficult to disentangle from the local thermodynamic influence, given that the mean meridional circulation remains inextricably tied to the local thermodynamic structure of the atmosphere. However, using idealized general circulation model simulations, we propose a novel method to segregate the dynamical impact from the thermodynamic impact on the tropical high cloud fraction. To this end, our investigation primarily focuses on the mechanisms underpinning changes in the high cloud cover in the deep tropics in response to extratropical surface warming, when the tropical sea surface temperatures remain invariant. Net convective detrainment of ice cloud condensates decreases at the peak detrainment region, without a rise in its altitude. We also find that the importance of depositional growth of ice cloud condensates in controlling the high cloud fraction response in the deep tropics varies with altitude.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热带高云比例因哈德利单胞的间接减弱而减少
在大多数大气环流模式中,热带高云层会随着地表变暖而减少。根据 "稳定-虹膜 "假说,这种减少是由热力学控制的,与辐射驱动的晴空辐合减少有关,此时峰值砧云由于等温线上升而上升。大尺度动力学变化对热带高云率的影响仍然难以从局部热力学影响中分离出来,因为平均经向环流仍然与大气的局部热力学结构密不可分。不过,我们利用理想化的大气环流模式模拟,提出了一种新方法来分离热带高云率的动力学影响和热力学影响。为此,我们的研究主要集中在当热带海洋表面温度保持不变时,热带深部高云层随外热带表面变暖而变化的机制。冰云凝结物的净对流脱附在脱附峰值区域有所减少,但其高度并没有上升。我们还发现,冰云凝结物的沉积增长在控制热带深处高云率响应方面的重要性随海拔高度而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
Reduction of the Tropical Atmospheric Dynamics Into Shallow-Water Analogs: A Formulation Analysis Circumpolar Transport and Overturning Strength Inferred From Satellite Observables Using Deep Learning in an Eddying Southern Ocean Channel Model Multi-Decadal Soil Moisture and Crop Yield Variability—A Case Study With the Community Land Model (CLM5) Coupling Soil Erosion and Sediment Transport Processes With the Variable Infiltration Capacity Model (VIC-SED) for Applications Suitable With Coarse Spatial and Temporal Resolutions Using Shortened Spin-Ups to Speed Up Ocean Biogeochemical Model Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1