The applications of flexible electronics in dental, oral, and craniofacial medicine

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2024-05-29 DOI:10.1038/s41528-024-00318-y
Kang-Ning Wang, Zi-Zhan Li, Ze-Min Cai, Lei-Ming Cao, Nian-Nian Zhong, Bing Liu, Kan Zhou, Fang-Yi Huo, Bo Cai, Lin-Lin Bu
{"title":"The applications of flexible electronics in dental, oral, and craniofacial medicine","authors":"Kang-Ning Wang, Zi-Zhan Li, Ze-Min Cai, Lei-Ming Cao, Nian-Nian Zhong, Bing Liu, Kan Zhou, Fang-Yi Huo, Bo Cai, Lin-Lin Bu","doi":"10.1038/s41528-024-00318-y","DOIUrl":null,"url":null,"abstract":"Dental, oral, and craniofacial diseases jeopardize health and reduce the quality of life. Accessing disease-related signals in advance is beneficial to prevent the occurrence or progression of those diseases. However, the inconvenience of periodical in-hospital examinations and the difficulty of sustaining daily health monitoring challenge personal compliance and possibly lead to limited prevention or treatment. Medical flexible electronics are electric devices fabricated on soft and extensible substrates to fit the human skin and enable non-invasive continuous monitoring of biophysical/biochemical signals. They provide the possibility of long-term, continuous, comfortable, and wireless healthcare monitoring and are expected to alleviate time and economic consumption by avoiding in-hospital examinations and treatment. Therefore, flexible electronics have emerged for early diagnosis and disease monitoring in stomatology. It is noteworthy that special biophysical/biochemical characteristics and the environment of dental, oral, and craniofacial areas bring distinct challenges that flexible electronics need to address ingeniously to ensure their stability, selectivity, and sensitivity. This review summaries flexible electronics and their specificity when used in dental, oral, and craniofacial applications, including monitoring saliva or cavity-gas related biosignals, sensing the mechanical fluctuation from facial muscle/respiratory activities or orthodontic forces, and executing special functions in the prevention or postoperative recovery of relevant diseases. Furthermore, after analyzing current challenges and proposing potential solutions, the “5I” principles of imperceptibility, intelligence, individualization, integration, and inexpensiveness are presented to help guide the future development of flexible electronics and promote their commercialization for dental, oral, and craniofacial medicine.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00318-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00318-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Dental, oral, and craniofacial diseases jeopardize health and reduce the quality of life. Accessing disease-related signals in advance is beneficial to prevent the occurrence or progression of those diseases. However, the inconvenience of periodical in-hospital examinations and the difficulty of sustaining daily health monitoring challenge personal compliance and possibly lead to limited prevention or treatment. Medical flexible electronics are electric devices fabricated on soft and extensible substrates to fit the human skin and enable non-invasive continuous monitoring of biophysical/biochemical signals. They provide the possibility of long-term, continuous, comfortable, and wireless healthcare monitoring and are expected to alleviate time and economic consumption by avoiding in-hospital examinations and treatment. Therefore, flexible electronics have emerged for early diagnosis and disease monitoring in stomatology. It is noteworthy that special biophysical/biochemical characteristics and the environment of dental, oral, and craniofacial areas bring distinct challenges that flexible electronics need to address ingeniously to ensure their stability, selectivity, and sensitivity. This review summaries flexible electronics and their specificity when used in dental, oral, and craniofacial applications, including monitoring saliva or cavity-gas related biosignals, sensing the mechanical fluctuation from facial muscle/respiratory activities or orthodontic forces, and executing special functions in the prevention or postoperative recovery of relevant diseases. Furthermore, after analyzing current challenges and proposing potential solutions, the “5I” principles of imperceptibility, intelligence, individualization, integration, and inexpensiveness are presented to help guide the future development of flexible electronics and promote their commercialization for dental, oral, and craniofacial medicine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性电子技术在牙科、口腔和颅面医学中的应用
牙齿、口腔和颅面疾病危害健康,降低生活质量。提前获取与疾病相关的信号有利于预防这些疾病的发生或恶化。然而,定期院内检查带来的不便和坚持日常健康监测的困难对个人的依从性提出了挑战,并可能导致有限的预防或治疗。医用柔性电子器件是在柔软、可延伸的基底上制造的适合人体皮肤的电子设备,可对生物物理/生物化学信号进行非侵入式连续监测。它们提供了长期、连续、舒适和无线医疗监测的可能性,并有望通过避免院内检查和治疗来减少时间和经济消耗。因此,用于口腔科早期诊断和疾病监测的柔性电子产品应运而生。值得注意的是,特殊的生物物理/生物化学特性以及牙齿、口腔和颅面区域的环境带来了独特的挑战,柔性电子器件需要巧妙地应对这些挑战,以确保其稳定性、选择性和灵敏度。这篇综述总结了柔性电子器件及其在牙科、口腔和颅面应用中的特殊性,包括监测唾液或龋洞气体相关生物信号、感知面部肌肉/呼吸活动或正畸力产生的机械波动,以及在相关疾病的预防或术后恢复中执行特殊功能。此外,在分析了当前面临的挑战并提出潜在解决方案之后,还提出了 "5I "原则,即不可感知性、智能性、个性化、集成性和不可感知性,以帮助指导柔性电子产品的未来发展,并促进其在牙科、口腔和颅面医学领域的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Interplay between strain and charge in Cu(In,Ga)Se2 flexible photovoltaics Creating highly efficient stretchable OLEDs with nanowavy structures for angle-independent narrow band emission Strong and high-conductivity hydrogels with all-polymer nanofibrous networks for applications as high-capacitance flexible electrodes Electrically tunable infrared optics enabled by flexible ion-permeable conducting polymer-cellulose paper Conformal printed electronics on flexible substrates and inflatable catheters using lathe-based aerosol jet printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1