Underoil superhydrophilic flame-retardant 3D porous composite for efficient on-demand emulsion separation: Interface engineering design on sphagnum moss

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Friction Pub Date : 2024-05-29 DOI:10.1007/s40544-023-0845-4
Yuyan Guo, Peng Liu, Wenhao Zhang, Zhiguang Guo, Weimin Liu
{"title":"Underoil superhydrophilic flame-retardant 3D porous composite for efficient on-demand emulsion separation: Interface engineering design on sphagnum moss","authors":"Yuyan Guo, Peng Liu, Wenhao Zhang, Zhiguang Guo, Weimin Liu","doi":"10.1007/s40544-023-0845-4","DOIUrl":null,"url":null,"abstract":"<p>Oil pollution and the energy crisis make oil-water separation an urgent for human need. The widespread use of materials with a single emulsion separation capability is limited. Multifunctional on-demand separation materials can adapt to a wide range of application scenarios, thus having a wider range of applications. The underoil superhydrophilic surface is of great significance for realizing the on-demand separation of oil/water emulsions through the removal of water in the oil and oil in the water. A 3D porous emulsion separation material based on the superhydrophilic principle of sphagnum moss was designed. The material was prepared in a simple step by taking advantage of the adhesion of polydopamine and the introduction of the as-prepared superhydrophilic BaSO<sub>4</sub> nanoparticles to achieve superhydrophilicity with a water contact angle (WCA) of 0° and an oil contact angle (OCA) of 157.3°, resulting in excellent separation performance for both water-in-oil and oil-in-water emulsions. Underoil superhydrophilic porous composite (OSPC) can complete two kinds of emulsion separations by filtration or adsorption. It adsorbs water from water-in-oil emulsion to achieve separation, with a good adsorption capacity of 74.38 g/g and efficiency up to 99%. It can also filter oil-in-water emulsions with an efficiency of 99.92%. The separation efficiencies are all almost unchanged after ten separation cycles. Furthermore, the material has excellent flame retardancy, which reduces the possibility of secondary disasters. The three-dimensional porous sponge has excellent on-demand separation performance for multiple emulsions. It provides a new preparation strategy for underoil superhydrophilic materials and a new idea for the design direction of special wetting materials for the on-demand separation of oil/water emulsions.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"80 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0845-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oil pollution and the energy crisis make oil-water separation an urgent for human need. The widespread use of materials with a single emulsion separation capability is limited. Multifunctional on-demand separation materials can adapt to a wide range of application scenarios, thus having a wider range of applications. The underoil superhydrophilic surface is of great significance for realizing the on-demand separation of oil/water emulsions through the removal of water in the oil and oil in the water. A 3D porous emulsion separation material based on the superhydrophilic principle of sphagnum moss was designed. The material was prepared in a simple step by taking advantage of the adhesion of polydopamine and the introduction of the as-prepared superhydrophilic BaSO4 nanoparticles to achieve superhydrophilicity with a water contact angle (WCA) of 0° and an oil contact angle (OCA) of 157.3°, resulting in excellent separation performance for both water-in-oil and oil-in-water emulsions. Underoil superhydrophilic porous composite (OSPC) can complete two kinds of emulsion separations by filtration or adsorption. It adsorbs water from water-in-oil emulsion to achieve separation, with a good adsorption capacity of 74.38 g/g and efficiency up to 99%. It can also filter oil-in-water emulsions with an efficiency of 99.92%. The separation efficiencies are all almost unchanged after ten separation cycles. Furthermore, the material has excellent flame retardancy, which reduces the possibility of secondary disasters. The three-dimensional porous sponge has excellent on-demand separation performance for multiple emulsions. It provides a new preparation strategy for underoil superhydrophilic materials and a new idea for the design direction of special wetting materials for the on-demand separation of oil/water emulsions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效按需乳液分离的油底超亲水阻燃三维多孔复合材料:石炭藓界面工程设计
石油污染和能源危机使得油水分离成为人类的迫切需求。具有单一乳液分离能力的材料的广泛应用受到了限制。多功能按需分离材料能适应多种应用场景,因此具有更广泛的应用前景。通过去除油中的水和水中的油,油下超亲水表面对于实现油/水乳液的按需分离具有重要意义。根据泥炭藓的超亲水原理,设计了一种三维多孔乳液分离材料。该材料的制备步骤简单,利用聚多巴胺的粘附性,并引入制备的超亲水性 BaSO4 纳米粒子,实现了超亲水性,水接触角(WCA)为 0°,油接触角(OCA)为 157.3°,从而使油包水和水包油乳液具有优异的分离性能。油底超亲水多孔复合材料(OSPC)可通过过滤或吸附两种方式完成乳液分离。它能吸附油包水型乳液中的水分实现分离,吸附能力高达 74.38 g/g,吸附效率高达 99%。它还能过滤水包油型乳液,效率高达 99.92%。经过十次分离循环后,分离效率几乎保持不变。此外,该材料还具有优异的阻燃性,减少了发生二次灾害的可能性。三维多孔海绵对多种乳液具有优异的按需分离性能。它为油底超亲水材料提供了一种新的制备策略,也为油/水乳液按需分离专用润湿材料的设计方向提供了一种新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
期刊最新文献
A “bricks-and-mortar” structured graphene oxide/polyvinyl alcohol coating: enhanced water interfacial lubrication and durability Lubrication antagonism mechanism of nano-MoS2 and soot particles in ester base oil Excellent lubricating hydrogels with rapid photothermal sterilization for medical catheters coating A robust low-friction triple network hydrogel based on multiple synergistic enhancement mechanisms Tribological behavior of TiN, AlTiN, and AlTiCrN coatings in atmospheric and vacuum environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1