Approximating Densest Subgraph in Geometric Intersection Graphs

Sariel Har-Peled, Rahul Saladi
{"title":"Approximating Densest Subgraph in Geometric Intersection Graphs","authors":"Sariel Har-Peled, Rahul Saladi","doi":"arxiv-2405.18337","DOIUrl":null,"url":null,"abstract":"$ \\newcommand{\\cardin}[1]{\\left| {#1} \\right|}%\n\\newcommand{\\Graph}{\\Mh{\\mathsf{G}}}% \\providecommand{\\G}{\\Graph}%\n\\renewcommand{\\G}{\\Graph}% \\providecommand{\\GA}{\\Mh{H}}%\n\\renewcommand{\\GA}{\\Mh{H}}% \\newcommand{\\VV}{\\Mh{\\mathsf{V}}}%\n\\newcommand{\\VX}[1]{\\VV\\pth{#1}}% \\providecommand{\\EE}{\\Mh{\\mathsf{E}}}%\n\\renewcommand{\\EE}{\\Mh{\\mathsf{E}}}% \\newcommand{\\Re}{\\mathbb{R}}\n\\newcommand{\\reals}{\\mathbb{R}} \\newcommand{\\SetX}{\\mathsf{X}}\n\\newcommand{\\rad}{r} \\newcommand{\\Mh}[1]{#1} \\newcommand{\\query}{q}\n\\newcommand{\\eps}{\\varepsilon} \\newcommand{\\VorX}[1]{\\mathcal{V} \\pth{#1}}\n\\newcommand{\\Polygon}{\\mathsf{P}} \\newcommand{\\IntRange}[1]{[ #1 ]}\n\\newcommand{\\Space}{\\overline{\\mathsf{m}}}\n\\newcommand{\\pth}[2][\\!]{#1\\left({#2}\\right)}\n\\newcommand{\\polylog}{\\mathrm{polylog}} \\newcommand{\\N}{\\mathbb N}\n\\newcommand{\\Z}{\\mathbb Z} \\newcommand{\\pt}{p} \\newcommand{\\distY}[2]{\\left\\|\n{#1} - {#2} \\right\\|} \\newcommand{\\ptq}{q} \\newcommand{\\pts}{s}$ For an\nundirected graph $\\mathsf{G}=(\\mathsf{V}, \\mathsf{E})$, with $n$ vertices and\n$m$ edges, the \\emph{densest subgraph} problem, is to compute a subset $S\n\\subseteq \\mathsf{V}$ which maximizes the ratio $|\\mathsf{E}_S| / |S|$, where\n$\\mathsf{E}_S \\subseteq \\mathsf{E}$ is the set of all edges of $\\mathsf{G}$\nwith endpoints in $S$. The densest subgraph problem is a well studied problem\nin computer science. Existing exact and approximation algorithms for computing\nthe densest subgraph require $\\Omega(m)$ time. We present near-linear time (in\n$n$) approximation algorithms for the densest subgraph problem on\n\\emph{implicit} geometric intersection graphs, where the vertices are\nexplicitly given but not the edges. As a concrete example, we consider $n$\ndisks in the plane with arbitrary radii and present two different approximation\nalgorithms.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

$ \newcommand{\cardin}[1]{\left| {#1} \right|}% \newcommand{\Graph}{\Mh{\mathsf{G}}}% \providecommand{\G}{\Graph}% \renewcommand{\G}{\Graph}% \providecommand{\GA}{\Mh{H}}% \renewcommand{\GA}{\Mh{H}}% \newcommand{\VV}{\Mh{\mathsf{V}}}% \newcommand{\VX}[1]{\VV\pth{#1}}% \providecommand{\EE}{\Mh{\mathsf{E}}}% \renewcommand{\EE}{\Mh{\mathsf{E}}}% \newcommand{\Re}{\mathbb{R}} \newcommand{\reals}{\mathbb{R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\rad}{r} \newcommand{\Mh}[1]{#1} \newcommand{\query}{q} \newcommand{\eps}{\varepsilon} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\IntRange}[1]{[ #1 ]} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} \newcommand{\polylog}{\mathrm{polylog}} \newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\pt}{p} \newcommand{\distY}[2]{\left\| {#1} - {#2} \right\|} \newcommand{\ptq}{q} \newcommand{\pts}{s}$ For an undirected graph $\mathsf{G}=(\mathsf{V}, \mathsf{E})$, with $n$ vertices and $m$ edges, the \emph{densest subgraph} problem, is to compute a subset $S \subseteq \mathsf{V}$ which maximizes the ratio $|\mathsf{E}_S| / |S|$, where $\mathsf{E}_S \subseteq \mathsf{E}$ is the set of all edges of $\mathsf{G}$ with endpoints in $S$. The densest subgraph problem is a well studied problem in computer science. Existing exact and approximation algorithms for computing the densest subgraph require $\Omega(m)$ time. We present near-linear time (in $n$) approximation algorithms for the densest subgraph problem on \emph{implicit} geometric intersection graphs, where the vertices are explicitly given but not the edges. As a concrete example, we consider $n$ disks in the plane with arbitrary radii and present two different approximation algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
几何交点图中最密集子图的逼近
$\newcommand{cardin}[1]{\left| {#1}\right|}%\newcommand{\Graph}{\Mh{\mathsf{G}}}% \providecommand{\G}{\Graph}%\renewcommand{\G}{\Graph}% \providecommand{\GA}{\Mh{H}}%\renewcommand{\GA}{\Mh{H}}%\newcommand{\VV}{\Mh{\mathsf{V}}}%\newcommand{\VX}[1]{\VV\pth{#1}}%\providecommand{\EE}{\Mh{\mathsf{E}}}%\renewcommand{\EE}{\Mh{\mathsf{E}}}% \newcommand{\Re}{\mathbb{R}}\newcommand{\reals}{\mathbb{R}}\newcommand{\SetX}{\mathsf{X}}\newcommand{\rad}{r}\newcommand{\Mh}[1]{#1}\newcommand{query}{q}\newcommand{\eps}\{varepsilon}\newcommand{\VorX}[1]{\mathcal{V}\pth{#1}}\newcommand{\Polygon}{\mathsf{P}}\newcommand{\IntRange}[1]{[ #1 ]}\newcommand{\Space}{\overline{\mathsf{m}}}\newcommand{\pth}[2][\!]{#1\left({#2}\right)}\newcommand{\polylog}{\mathrm{polylog}}\newcommand{N}{mathbb N}\newcommand{Z}\{mathbb Z}\新命令{pt}{p}。\newcommand{\distY}[2]{\left\|{#1}- {#2}\right\|}\newcommand{ptq}{q}\newcommand{pts}{s}$ 对于一个无向图 $\mathsf{G}=(\mathsf{V}, \mathsf{E})$, 有$n$顶点和$m$边,emph{densest subgraph}问题、是计算一个子集 $S\subseteq \mathsf{V}$,它能使比率 $|mathsf{E}_S| / |S|$最大化,其中$mathsf{E}_S \subseteq \mathsf{E}$是$mathsf{G}$中所有端点在$S$的边的集合。最密子图问题是计算机科学中一个研究得很透彻的问题。计算最密集子图的现有精确算法和近似算法都需要 $\Omega(m)$ 时间。我们提出了几何交集图上最密子图问题的近线性时间($n$)近似算法,其中顶点是明确给出的,但边没有给出。作为一个具体例子,我们考虑了平面上具有任意半径的 $n$ 圆盘,并提出了两种不同的近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1