{"title":"Performance evaluation of seven multi-label classification methods on real-world patent and publication datasets","authors":"Shuo Xu, Yuefu Zhang, Xin An, Sainan Pi","doi":"10.2478/jdis-2024-0014","DOIUrl":null,"url":null,"abstract":"Purpose Many science, technology and innovation (STI) resources are attached with several different labels. To assign automatically the resulting labels to an interested instance, many approaches with good performance on the benchmark datasets have been proposed for multilabel classification task in the literature. Furthermore, several open-source tools implementing these approaches have also been developed. However, the characteristics of real-world multilabel patent and publication datasets are not completely in line with those of benchmark ones. Therefore, the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets. Design/methodology/approach Three real-world datasets (Biological-Sciences, Health-Sciences, and USPTO) from SciGraph and USPTO database are constructed. Seven multilabel classification methods with tuned parameters (dependency-LDA, ML<jats:italic>k</jats:italic>NN, LabelPowerset, RA<jats:italic>k</jats:italic>EL, TextCNN, TexRNN, and TextRCNN) are comprehensively compared on these three real-world datasets. To evaluate the performance, the study adopts three classification-based metrics: Macro-F1, Micro-F1, and Hamming Loss. Findings The TextCNN and TextRCNN models show obvious superiority on small-scale datasets with more complex hierarchical structure of labels and more balanced documentlabel distribution in terms of macro-F1, micro-F1 and Hamming Loss. The ML<jats:italic>k</jats:italic>NN method works better on the larger-scale dataset with more unbalanced document-label distribution. Research limitations Three real-world datasets differ in the following aspects: statement, data quality, and purposes. Additionally, open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection, which in turn impacts the performance of a multi-label classification approach. In the near future, we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings. Practical implications The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets, underscoring the complexity of real-world multi-label classification tasks. Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels. With ongoing enhancements in deep learning algorithms and large-scale models, it is expected that the efficacy of multi-label classification tasks will be significantly improved, reaching a level of practical utility in the foreseeable future. Originality/value (1) Seven multi-label classification methods are comprehensively compared on three real-world datasets. (2) The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution. (3) The ML<jats:italic>k</jats:italic>NN method works better on the larger-scale dataset with more unbalanced document-label distribution.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"66 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Science","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.2478/jdis-2024-0014","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose Many science, technology and innovation (STI) resources are attached with several different labels. To assign automatically the resulting labels to an interested instance, many approaches with good performance on the benchmark datasets have been proposed for multilabel classification task in the literature. Furthermore, several open-source tools implementing these approaches have also been developed. However, the characteristics of real-world multilabel patent and publication datasets are not completely in line with those of benchmark ones. Therefore, the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets. Design/methodology/approach Three real-world datasets (Biological-Sciences, Health-Sciences, and USPTO) from SciGraph and USPTO database are constructed. Seven multilabel classification methods with tuned parameters (dependency-LDA, MLkNN, LabelPowerset, RAkEL, TextCNN, TexRNN, and TextRCNN) are comprehensively compared on these three real-world datasets. To evaluate the performance, the study adopts three classification-based metrics: Macro-F1, Micro-F1, and Hamming Loss. Findings The TextCNN and TextRCNN models show obvious superiority on small-scale datasets with more complex hierarchical structure of labels and more balanced documentlabel distribution in terms of macro-F1, micro-F1 and Hamming Loss. The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution. Research limitations Three real-world datasets differ in the following aspects: statement, data quality, and purposes. Additionally, open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection, which in turn impacts the performance of a multi-label classification approach. In the near future, we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings. Practical implications The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets, underscoring the complexity of real-world multi-label classification tasks. Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels. With ongoing enhancements in deep learning algorithms and large-scale models, it is expected that the efficacy of multi-label classification tasks will be significantly improved, reaching a level of practical utility in the foreseeable future. Originality/value (1) Seven multi-label classification methods are comprehensively compared on three real-world datasets. (2) The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution. (3) The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution.
期刊介绍:
JDIS devotes itself to the study and application of the theories, methods, techniques, services, infrastructural facilities using big data to support knowledge discovery for decision & policy making. The basic emphasis is big data-based, analytics centered, knowledge discovery driven, and decision making supporting. The special effort is on the knowledge discovery to detect and predict structures, trends, behaviors, relations, evolutions and disruptions in research, innovation, business, politics, security, media and communications, and social development, where the big data may include metadata or full content data, text or non-textural data, structured or non-structural data, domain specific or cross-domain data, and dynamic or interactive data.
The main areas of interest are:
(1) New theories, methods, and techniques of big data based data mining, knowledge discovery, and informatics, including but not limited to scientometrics, communication analysis, social network analysis, tech & industry analysis, competitive intelligence, knowledge mapping, evidence based policy analysis, and predictive analysis.
(2) New methods, architectures, and facilities to develop or improve knowledge infrastructure capable to support knowledge organization and sophisticated analytics, including but not limited to ontology construction, knowledge organization, semantic linked data, knowledge integration and fusion, semantic retrieval, domain specific knowledge infrastructure, and semantic sciences.
(3) New mechanisms, methods, and tools to embed knowledge analytics and knowledge discovery into actual operation, service, or managerial processes, including but not limited to knowledge assisted scientific discovery, data mining driven intelligent workflows in learning, communications, and management.
Specific topic areas may include:
Knowledge organization
Knowledge discovery and data mining
Knowledge integration and fusion
Semantic Web metrics
Scientometrics
Analytic and diagnostic informetrics
Competitive intelligence
Predictive analysis
Social network analysis and metrics
Semantic and interactively analytic retrieval
Evidence-based policy analysis
Intelligent knowledge production
Knowledge-driven workflow management and decision-making
Knowledge-driven collaboration and its management
Domain knowledge infrastructure with knowledge fusion and analytics
Development of data and information services