Federico Luigi Dipasquale, Vincent Millot, Adriano Pisante
{"title":"Torus-like solutions for the Landau-de Gennes model. Part III: torus vs split minimizers","authors":"Federico Luigi Dipasquale, Vincent Millot, Adriano Pisante","doi":"10.1007/s00526-024-02743-3","DOIUrl":null,"url":null,"abstract":"<p>We study the behaviour of global minimizers of a continuum Landau–de Gennes energy functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeomorphic to a ball (a nematic droplet) and in a restricted class of <span>\\(\\mathbb {S}^1\\)</span>-equivariant configurations. It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024) that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations are either of <i>torus</i> or of <i>split</i> type. Here, starting from a nematic droplet with the homeotropic boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or even both) for the Euler–Lagrange equations do appear as energy minimizers by suitably deforming either the domain or the boundary data. As a consequence, we derive symmetry breaking results for the minimization among all competitors.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02743-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the behaviour of global minimizers of a continuum Landau–de Gennes energy functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeomorphic to a ball (a nematic droplet) and in a restricted class of \(\mathbb {S}^1\)-equivariant configurations. It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024) that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations are either of torus or of split type. Here, starting from a nematic droplet with the homeotropic boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or even both) for the Euler–Lagrange equations do appear as energy minimizers by suitably deforming either the domain or the boundary data. As a consequence, we derive symmetry breaking results for the minimization among all competitors.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.