Ethylcyclohexane + 2-Alkanol Mixtures: Thermodynamic Properties and Viscosity Modeling Using Friction Theory

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Thermophysics Pub Date : 2024-05-29 DOI:10.1007/s10765-024-03379-3
Mohammad Almasi
{"title":"Ethylcyclohexane + 2-Alkanol Mixtures: Thermodynamic Properties and Viscosity Modeling Using Friction Theory","authors":"Mohammad Almasi","doi":"10.1007/s10765-024-03379-3","DOIUrl":null,"url":null,"abstract":"<div><p>A thorough evaluation of the thermophysical properties of ethylcyclohexane (ECH) mixed with 2-alkanols (2-propanol to 2-hexanol) is presented across the temperature range of 293.15 to 323.15 K. The focus of this study is on the density and viscosity behavior of these systems. The experimental results demonstrate positive deviations from ideality in excess molar volume, while viscosity deviations are negative for all examined mixtures. This observation suggests the presence of weak intermolecular interactions between ECH and the 2-alkanol. These findings are consistent with the self-association behavior of 2-alkanol and the nonpolar nature of ECH, which disrupts the associated structures of the alcohols. Furthermore, the Friction theory (<i>f-theory</i>) was employed to model the viscosity of the binary mixtures. The <i>f-theory</i> exhibits excellent agreement with the experimental data, with a maximum deviation of only 2.24% observed in the ECH + 2-butanol system. This minimal discrepancy underscores the f-theory's efficacy in accurately correlating the viscosity measurements.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03379-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A thorough evaluation of the thermophysical properties of ethylcyclohexane (ECH) mixed with 2-alkanols (2-propanol to 2-hexanol) is presented across the temperature range of 293.15 to 323.15 K. The focus of this study is on the density and viscosity behavior of these systems. The experimental results demonstrate positive deviations from ideality in excess molar volume, while viscosity deviations are negative for all examined mixtures. This observation suggests the presence of weak intermolecular interactions between ECH and the 2-alkanol. These findings are consistent with the self-association behavior of 2-alkanol and the nonpolar nature of ECH, which disrupts the associated structures of the alcohols. Furthermore, the Friction theory (f-theory) was employed to model the viscosity of the binary mixtures. The f-theory exhibits excellent agreement with the experimental data, with a maximum deviation of only 2.24% observed in the ECH + 2-butanol system. This minimal discrepancy underscores the f-theory's efficacy in accurately correlating the viscosity measurements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乙基环己烷 + 2-烷醇混合物:热力学性质和利用摩擦理论建立粘度模型
本研究对乙基环己烷(ECH)与 2-烷醇(从 2-丙醇到 2-己醇)混合后在 293.15 至 323.15 K 温度范围内的热物理性质进行了全面评估。实验结果表明,过量摩尔体积与理想状态存在正偏差,而所有研究混合物的粘度偏差均为负值。这一观察结果表明,ECH 和 2-烷醇之间存在微弱的分子间相互作用。这些发现与 2-烷醇的自结合行为和 ECH 的非极性一致,后者会破坏醇的相关结构。此外,摩擦理论(f 理论)被用来模拟二元混合物的粘度。f 理论与实验数据非常吻合,在 ECH + 2-丁醇体系中观察到的最大偏差仅为 2.24%。这种极小的偏差凸显了 f 理论在准确关联粘度测量值方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
期刊最新文献
Developing a Control Strategy for Minimum Airflow Setting Considering CO2 Level and Energy Consumption in a Variable Air Volume System Thermophysical Properties and PC-SAFT Modeling of Binary Mixtures (Glycerol + 1,2-Ethanediol and Glycerol + 1,2-Propanediol) and Ternary Mixtures (Glycerol + Water + 1,2-Ethanediol, Glycerol + Water + 1,2-Propanediol, and Glycerol + Water + 1,3-Butanediol), at Various Temperatures and Atmospheric Pressure Correction: Nanoporous Film Layers to Enhance the Performance of Passive Radiative Cooling Paint Mixtures Enhancement in Active Thermal Management Efficiency of Micro/Mini-Pipes Based on Phase Change to Consider Pressure Drop A Composite Microwave Cavity for Liquid Volume Fraction and Simultaneous Phase Permittivity Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1