{"title":"Fractional modeling of cyclic loading behavior of polymeric materials","authors":"Wei Cai, Yongqi Zhang, Ping Wang, Zhouquan Wang","doi":"10.1007/s11043-024-09705-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a fractional-order model integrated with a damage variable to effectively characterize the stress or strain responses under strain- or stress-controlled cyclic loading. We derive a relationship among mean stress, ratcheting strain, and cyclic number from the established fractional constitutive relationship. Experimental validation with polymeric data demonstrates the validity of our model, indicating how fractional order captures the effects of various loading conditions—including mean stress, temperature, and loading rate—on ratcheting strain responses. Additionally, our model offers a simpler mathematical framework than the existing models, without compromising accuracy.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1743 - 1759"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09705-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a fractional-order model integrated with a damage variable to effectively characterize the stress or strain responses under strain- or stress-controlled cyclic loading. We derive a relationship among mean stress, ratcheting strain, and cyclic number from the established fractional constitutive relationship. Experimental validation with polymeric data demonstrates the validity of our model, indicating how fractional order captures the effects of various loading conditions—including mean stress, temperature, and loading rate—on ratcheting strain responses. Additionally, our model offers a simpler mathematical framework than the existing models, without compromising accuracy.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.