Convergence rates of particle approximation of forward-backward splitting algorithm for granular medium equations

Matej Benko, Iwona Chlebicka, Jørgen Endal, Błażej Miasojedow
{"title":"Convergence rates of particle approximation of forward-backward splitting algorithm for granular medium equations","authors":"Matej Benko, Iwona Chlebicka, Jørgen Endal, Błażej Miasojedow","doi":"arxiv-2405.18034","DOIUrl":null,"url":null,"abstract":"We study the spatially homogeneous granular medium equation\n\\[\\partial_t\\mu=\\rm{div}(\\mu\\nabla V)+\\rm{div}(\\mu(\\nabla W \\ast\n\\mu))+\\Delta\\mu\\,,\\] within a large and natural class of the confinement\npotentials $V$ and interaction potentials $W$. The considered problem do not\nneed to assume that $\\nabla V$ or $\\nabla W$ are globally Lipschitz. With the\naim of providing particle approximation of solutions, we design efficient\nforward-backward splitting algorithms. Sharp convergence rates in terms of the\nWasserstein distance are provided.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the spatially homogeneous granular medium equation \[\partial_t\mu=\rm{div}(\mu\nabla V)+\rm{div}(\mu(\nabla W \ast \mu))+\Delta\mu\,,\] within a large and natural class of the confinement potentials $V$ and interaction potentials $W$. The considered problem do not need to assume that $\nabla V$ or $\nabla W$ are globally Lipschitz. With the aim of providing particle approximation of solutions, we design efficient forward-backward splitting algorithms. Sharp convergence rates in terms of the Wasserstein distance are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
颗粒介质方程的前向-后向分裂算法的颗粒近似收敛率
我们研究了空间均匀颗粒介质方程([\partial_t\mu=\rm{div}(\mu\nabla V)+\rm{div}(\mu(\nabla W \ast\mu))+\Delta\mu\,,\] within a large and natural class of the confinementpotentials $V$ and interaction potentials $W$)。所考虑的问题不需要假设 $\nabla V$ 或 $\nabla W$ 是全局的 Lipschitz。为了提供粒子近似解,我们设计了高效的前向-后向分裂算法。我们提供了以瓦瑟斯坦距离(Wasserstein distance)表示的尖锐收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1