A Robust Approach to Gaussian Processes Implementation

Juliette Mukangango, Amanda Muyskens, Benjamin W. Priest
{"title":"A Robust Approach to Gaussian Processes Implementation","authors":"Juliette Mukangango, Amanda Muyskens, Benjamin W. Priest","doi":"arxiv-2409.11577","DOIUrl":null,"url":null,"abstract":"Gaussian Process (GP) regression is a flexible modeling technique used to\npredict outputs and to capture uncertainty in the predictions. However, the GP\nregression process becomes computationally intensive when the training spatial\ndataset has a large number of observations. To address this challenge, we\nintroduce a scalable GP algorithm, termed MuyGPs, which incorporates nearest\nneighbor and leave-one-out cross-validation during training. This approach\nenables the evaluation of large spatial datasets with state-of-the-art accuracy\nand speed in certain spatial problems. Despite these advantages, conventional\nquadratic loss functions used in the MuyGPs optimization such as Root Mean\nSquared Error(RMSE), are highly influenced by outliers. We explore the behavior\nof MuyGPs in cases involving outlying observations, and subsequently, develop a\nrobust approach to handle and mitigate their impact. Specifically, we introduce\na novel leave-one-out loss function based on the pseudo-Huber function (LOOPH)\nthat effectively accounts for outliers in large spatial datasets within the\nMuyGPs framework. Our simulation study shows that the \"LOOPH\" loss method\nmaintains accuracy despite outlying observations, establishing MuyGPs as a\npowerful tool for mitigating unusual observation impacts in the large data\nregime. In the analysis of U.S. ozone data, MuyGPs provides accurate\npredictions and uncertainty quantification, demonstrating its utility in\nmanaging data anomalies. Through these efforts, we advance the understanding of\nGP regression in spatial contexts.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian Process (GP) regression is a flexible modeling technique used to predict outputs and to capture uncertainty in the predictions. However, the GP regression process becomes computationally intensive when the training spatial dataset has a large number of observations. To address this challenge, we introduce a scalable GP algorithm, termed MuyGPs, which incorporates nearest neighbor and leave-one-out cross-validation during training. This approach enables the evaluation of large spatial datasets with state-of-the-art accuracy and speed in certain spatial problems. Despite these advantages, conventional quadratic loss functions used in the MuyGPs optimization such as Root Mean Squared Error(RMSE), are highly influenced by outliers. We explore the behavior of MuyGPs in cases involving outlying observations, and subsequently, develop a robust approach to handle and mitigate their impact. Specifically, we introduce a novel leave-one-out loss function based on the pseudo-Huber function (LOOPH) that effectively accounts for outliers in large spatial datasets within the MuyGPs framework. Our simulation study shows that the "LOOPH" loss method maintains accuracy despite outlying observations, establishing MuyGPs as a powerful tool for mitigating unusual observation impacts in the large data regime. In the analysis of U.S. ozone data, MuyGPs provides accurate predictions and uncertainty quantification, demonstrating its utility in managing data anomalies. Through these efforts, we advance the understanding of GP regression in spatial contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现高斯过程的稳健方法
高斯过程(GP)回归是一种灵活的建模技术,用于预测输出和捕捉预测中的不确定性。然而,当训练空间数据集具有大量观测数据时,GP 回归过程就会变得计算密集。为了应对这一挑战,我们引入了一种可扩展的 GP 算法,称为 MuyGPs,该算法在训练过程中结合了近邻和一出交叉验证。在某些空间问题上,这种方法能以最先进的精度和速度对大型空间数据集进行评估。尽管有这些优点,MuyGPs 优化中使用的传统二次损失函数(如均方根误差(RMSE))受异常值的影响很大。我们探讨了 MuyGPs 在涉及离群观测值的情况下的行为,并随后开发了一种稳健的方法来处理和减轻离群的影响。具体来说,我们在伪胡伯函数(LOOPH)的基础上引入了一种新的 "leave-one-out "损失函数,该函数能在 MuyGPs 框架内有效地考虑大型空间数据集中的离群值。我们的模拟研究表明,尽管观测数据离群,"LOOPH "损失方法仍能保持准确性,从而使 MuyGPs 成为在大型数据时代减轻异常观测影响的有力工具。在对美国臭氧数据的分析中,MuyGPs 提供了准确的预测和不确定性量化,证明了其在管理数据异常方面的实用性。通过这些努力,我们推进了对空间背景下 GP 回归的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1