Effects of the entropy source on Monte Carlo simulations

Anton Lebedev, Annika Möslein, Olha I. Yaman, Del Rajan, Philip Intallura
{"title":"Effects of the entropy source on Monte Carlo simulations","authors":"Anton Lebedev, Annika Möslein, Olha I. Yaman, Del Rajan, Philip Intallura","doi":"arxiv-2409.11539","DOIUrl":null,"url":null,"abstract":"In this paper we show how different sources of random numbers influence the\noutcomes of Monte Carlo simulations. We compare industry-standard pseudo-random\nnumber generators (PRNGs) to a quantum random number generator (QRNG) and show,\nusing examples of Monte Carlo simulations with exact solutions, that the QRNG\nyields statistically significantly better approximations than the PRNGs. Our\nresults demonstrate that higher accuracy can be achieved in the commonly known\nMonte Carlo method for approximating $\\pi$. For Buffon's needle experiment, we\nfurther quantify a potential reduction in approximation errors by up to\n$1.89\\times$ for optimal parameter choices when using a QRNG and a reduction of\nthe sample size by $\\sim 8\\times$ for sub-optimal parameter choices. We\nattribute the observed higher accuracy to the underlying differences in the\nrandom sampling, where a uniformity analysis reveals a tendency of the QRNG to\nsample the solution space more homogeneously. Additionally, we compare the\nresults obtained with the QRNG and PRNG in solving the non-linear stochastic\nSchr\\\"odinger equation, benchmarked against the analytical solution. We observe\nhigher accuracy of the approximations of the QRNG and demonstrate that\nequivalent results can be achieved at 1/3 to 1/10-th of the costs.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we show how different sources of random numbers influence the outcomes of Monte Carlo simulations. We compare industry-standard pseudo-random number generators (PRNGs) to a quantum random number generator (QRNG) and show, using examples of Monte Carlo simulations with exact solutions, that the QRNG yields statistically significantly better approximations than the PRNGs. Our results demonstrate that higher accuracy can be achieved in the commonly known Monte Carlo method for approximating $\pi$. For Buffon's needle experiment, we further quantify a potential reduction in approximation errors by up to $1.89\times$ for optimal parameter choices when using a QRNG and a reduction of the sample size by $\sim 8\times$ for sub-optimal parameter choices. We attribute the observed higher accuracy to the underlying differences in the random sampling, where a uniformity analysis reveals a tendency of the QRNG to sample the solution space more homogeneously. Additionally, we compare the results obtained with the QRNG and PRNG in solving the non-linear stochastic Schr\"odinger equation, benchmarked against the analytical solution. We observe higher accuracy of the approximations of the QRNG and demonstrate that equivalent results can be achieved at 1/3 to 1/10-th of the costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熵源对蒙特卡罗模拟的影响
在本文中,我们展示了不同来源的随机数如何影响蒙特卡罗模拟的结果。我们将行业标准的伪随机数发生器(PRNG)与量子随机数发生器(QRNG)进行了比较,并通过具有精确解的蒙特卡罗模拟实例表明,QRNG在统计上产生的近似结果明显优于PRNG。我们的研究结果表明,用通常已知的蒙特卡罗方法逼近 $\pi$ 可以获得更高的精度。对于布丰的针实验,我们进一步量化了使用 QRNG 时,最优参数选择的近似误差可能减少高达 $1.89\times$,次优参数选择的样本量可能减少 $\sim 8\times$。我们将观察到的更高精度归因于随机抽样的潜在差异,均匀性分析表明 QRNG 倾向于更均匀地对解空间进行抽样。此外,我们还比较了 QRNG 和 PRNG 在求解非线性随机薛定谔方程时获得的结果,并以解析解作为基准。我们发现 QRNG 的近似精度更高,并证明只需花费 1/3 到 1/10 的成本就能获得相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1