Ultrahigh Sensitivity Surface Plasmonic Resonance Temperature Sensor Based on Polydimethylsiloxane-Coated Photonic Crystal Fiber

IF 3.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL Plasmonics Pub Date : 2024-05-27 DOI:10.1007/s11468-024-02359-5
Shaochun Fu, Wentao Jin, Longsheng Liu, Meng Song, Ying Guo, Hui Qi, Xiaohong Sun
{"title":"Ultrahigh Sensitivity Surface Plasmonic Resonance Temperature Sensor Based on Polydimethylsiloxane-Coated Photonic Crystal Fiber","authors":"Shaochun Fu, Wentao Jin, Longsheng Liu, Meng Song, Ying Guo, Hui Qi, Xiaohong Sun","doi":"10.1007/s11468-024-02359-5","DOIUrl":null,"url":null,"abstract":"<p>We propose and demonstrate a compact optical fiber temperature sensor based on surface plasmon resonance with high sensitivity and high figure of merit. This optical fiber temperature sensor uses a new photonic crystal fiber designed by us, which is realized by coating a gold film on the polished plane of the photonic crystal fiber and coating the high thermo-optical coefficient material polydimethylsiloxane on the outer surface of the fiber. Small changes in the refractive index of the polydimethylsiloxane due to temperature variations will affect the plasmon pattern, which in turn leads to a change in the measured transmission spectrum. Our numerical results show that the maximum achievable temperature sensitivity of this optical fiber temperature sensor in the range of 60–100 °C is 38 nm/°C, and the maximum refractive index sensitivity and figure of merit are 84444.4 nm/RIU and 603.175 RIU<sup>−1</sup>, respectively. This is better than the existing various types of PCF temperature sensor. The proposed temperature sensor has the advantages of stable structure, ultra-high temperature sensitivity, and small size. It has good application potential in the field of high-precision temperature control, environmental temperature detecting.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02359-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We propose and demonstrate a compact optical fiber temperature sensor based on surface plasmon resonance with high sensitivity and high figure of merit. This optical fiber temperature sensor uses a new photonic crystal fiber designed by us, which is realized by coating a gold film on the polished plane of the photonic crystal fiber and coating the high thermo-optical coefficient material polydimethylsiloxane on the outer surface of the fiber. Small changes in the refractive index of the polydimethylsiloxane due to temperature variations will affect the plasmon pattern, which in turn leads to a change in the measured transmission spectrum. Our numerical results show that the maximum achievable temperature sensitivity of this optical fiber temperature sensor in the range of 60–100 °C is 38 nm/°C, and the maximum refractive index sensitivity and figure of merit are 84444.4 nm/RIU and 603.175 RIU−1, respectively. This is better than the existing various types of PCF temperature sensor. The proposed temperature sensor has the advantages of stable structure, ultra-high temperature sensitivity, and small size. It has good application potential in the field of high-precision temperature control, environmental temperature detecting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚二甲基硅氧烷涂层光子晶体光纤的超高灵敏度表面等离子体共振温度传感器
我们提出并演示了一种基于表面等离子体共振的紧凑型光纤温度传感器,它具有高灵敏度和高优点。这种光纤温度传感器采用了我们设计的一种新型光子晶体光纤,它是通过在光子晶体光纤的抛光面上镀一层金膜,并在光纤外表面镀上高热光系数材料聚二甲基硅氧烷而实现的。温度变化引起的聚二甲基硅氧烷折射率的微小变化会影响等离子图案,进而导致测量到的透射光谱发生变化。我们的数值结果表明,这种光纤温度传感器在 60-100 ℃ 范围内可达到的最大温度灵敏度为 38 nm/℃,最大折射率灵敏度和优点系数分别为 84444.4 nm/RIU 和 603.175 RIU-1。这优于现有的各种 PCF 温度传感器。所提出的温度传感器具有结构稳定、温度灵敏度超高、体积小等优点。它在高精度温度控制、环境温度检测等领域具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
期刊最新文献
Design and Development of Surface Plasmon Resonance Biosensor for Early Detection of Cervical Cancer Utilizing Nucleus and Cytoplasm Design and Analysis of a Plasmonic Metasurface-Based Graphene Sensor for Highly Sensitive and Label-Free Detection of COVID-19 Biomarkers High-Performance Plasmonic Biosensor for Blood Cancer Detection: Achieving Ultrahigh Figure-of-Merit Core–Shell Plasmonic Nanostructures for Hyperthermia of Cancer and Tumor Cells Design and Analysis of a Terahertz Metasurface-Based Refractive Index Sensor for Hemoglobin Detection With Behaviour Prediction Using Polynomial Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1