Morgan Thomas, Noel M. O’Boyle, Andreas Bender, Chris De Graaf
{"title":"MolScore: a scoring, evaluation and benchmarking framework for generative models in de novo drug design","authors":"Morgan Thomas, Noel M. O’Boyle, Andreas Bender, Chris De Graaf","doi":"10.1186/s13321-024-00861-w","DOIUrl":null,"url":null,"abstract":"<div><p>Generative models are undergoing rapid research and application to de novo drug design. To facilitate their application and evaluation, we present MolScore. MolScore already contains many drug-design-relevant scoring functions commonly used in benchmarks such as, molecular similarity, molecular docking, predictive models, synthesizability, and more. In addition, providing performance metrics to evaluate generative model performance based on the chemistry generated. With this unification of functionality, MolScore re-implements commonly used benchmarks in the field (such as GuacaMol, MOSES, and MolOpt). Moreover, new benchmarks can be created trivially. We demonstrate this by testing a chemical language model with reinforcement learning on three new tasks of increasing complexity related to the design of 5-HT<sub>2a</sub> ligands that utilise either molecular descriptors, 266 pre-trained QSAR models, or dual molecular docking. Lastly, MolScore can be integrated into an existing Python script with just three lines of code. This framework is a step towards unifying generative model application and evaluation as applied to drug design for both practitioners and researchers. The framework can be found on GitHub and downloaded directly from the Python Package Index.</p><p><b>Scientific Contribution</b></p><p>MolScore is an open-source platform to facilitate generative molecular design and evaluation thereof for application in drug design. This platform takes important steps towards unifying existing benchmarks, providing a platform to share new benchmarks, and improves customisation, flexibility and usability for practitioners over existing solutions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00861-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00861-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Generative models are undergoing rapid research and application to de novo drug design. To facilitate their application and evaluation, we present MolScore. MolScore already contains many drug-design-relevant scoring functions commonly used in benchmarks such as, molecular similarity, molecular docking, predictive models, synthesizability, and more. In addition, providing performance metrics to evaluate generative model performance based on the chemistry generated. With this unification of functionality, MolScore re-implements commonly used benchmarks in the field (such as GuacaMol, MOSES, and MolOpt). Moreover, new benchmarks can be created trivially. We demonstrate this by testing a chemical language model with reinforcement learning on three new tasks of increasing complexity related to the design of 5-HT2a ligands that utilise either molecular descriptors, 266 pre-trained QSAR models, or dual molecular docking. Lastly, MolScore can be integrated into an existing Python script with just three lines of code. This framework is a step towards unifying generative model application and evaluation as applied to drug design for both practitioners and researchers. The framework can be found on GitHub and downloaded directly from the Python Package Index.
Scientific Contribution
MolScore is an open-source platform to facilitate generative molecular design and evaluation thereof for application in drug design. This platform takes important steps towards unifying existing benchmarks, providing a platform to share new benchmarks, and improves customisation, flexibility and usability for practitioners over existing solutions.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.