Konstantin Warneke, David G Behm, Shahab Alizadeh, Martin Hillebrecht, Andreas Konrad, Klaus Wirth
{"title":"Discussing Conflicting Explanatory Approaches in Flexibility Training Under Consideration of Physiology: A Narrative Review.","authors":"Konstantin Warneke, David G Behm, Shahab Alizadeh, Martin Hillebrecht, Andreas Konrad, Klaus Wirth","doi":"10.1007/s40279-024-02043-y","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanisms underlying range of motion enhancements via flexibility training discussed in the literature show high heterogeneity in research methodology and study findings. In addition, scientific conclusions are mostly based on functional observations while studies considering the underlying physiology are less common. However, understanding the underlying mechanisms that contribute to an improved range of motion through stretching is crucial for conducting comparable studies with sound designs, optimising training routines and accurately interpreting resulting outcomes. While there seems to be no evidence to attribute acute range of motion increases as well as changes in muscle and tendon stiffness and pain perception specifically to stretching or foam rolling, the role of general warm-up effects is discussed in this paper. Additionally, the role of mechanical tension applied to greater muscle lengths for range of motion improvement will be discussed. Thus, it is suggested that physical training stressors can be seen as external stimuli that control gene expression via the targeted stimulation of transcription factors, leading to structural adaptations due to enhanced protein synthesis. Hence, the possible role of serial sarcomerogenesis in altering pain perception, reducing muscle stiffness and passive torque, or changes in the optimal joint angle for force development is considered as well as alternative interventions with a potential impact on anabolic pathways. As there are limited possibilities to directly measure serial sarcomere number, longitudinal muscle hypertrophy remains without direct evidence. The available literature does not demonstrate the necessity of only using specific flexibility training routines such as stretching to enhance acute or chronic range of motion.</p>","PeriodicalId":21969,"journal":{"name":"Sports Medicine","volume":" ","pages":"1785-1799"},"PeriodicalIF":9.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40279-024-02043-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanisms underlying range of motion enhancements via flexibility training discussed in the literature show high heterogeneity in research methodology and study findings. In addition, scientific conclusions are mostly based on functional observations while studies considering the underlying physiology are less common. However, understanding the underlying mechanisms that contribute to an improved range of motion through stretching is crucial for conducting comparable studies with sound designs, optimising training routines and accurately interpreting resulting outcomes. While there seems to be no evidence to attribute acute range of motion increases as well as changes in muscle and tendon stiffness and pain perception specifically to stretching or foam rolling, the role of general warm-up effects is discussed in this paper. Additionally, the role of mechanical tension applied to greater muscle lengths for range of motion improvement will be discussed. Thus, it is suggested that physical training stressors can be seen as external stimuli that control gene expression via the targeted stimulation of transcription factors, leading to structural adaptations due to enhanced protein synthesis. Hence, the possible role of serial sarcomerogenesis in altering pain perception, reducing muscle stiffness and passive torque, or changes in the optimal joint angle for force development is considered as well as alternative interventions with a potential impact on anabolic pathways. As there are limited possibilities to directly measure serial sarcomere number, longitudinal muscle hypertrophy remains without direct evidence. The available literature does not demonstrate the necessity of only using specific flexibility training routines such as stretching to enhance acute or chronic range of motion.
期刊介绍:
Sports Medicine focuses on providing definitive and comprehensive review articles that interpret and evaluate current literature, aiming to offer insights into research findings in the sports medicine and exercise field. The journal covers major topics such as sports medicine and sports science, medical syndromes associated with sport and exercise, clinical medicine's role in injury prevention and treatment, exercise for rehabilitation and health, and the application of physiological and biomechanical principles to specific sports.
Types of Articles:
Review Articles: Definitive and comprehensive reviews that interpret and evaluate current literature to provide rationale for and application of research findings.
Leading/Current Opinion Articles: Overviews of contentious or emerging issues in the field.
Original Research Articles: High-quality research articles.
Enhanced Features: Additional features like slide sets, videos, and animations aimed at increasing the visibility, readership, and educational value of the journal's content.
Plain Language Summaries: Summaries accompanying articles to assist readers in understanding important medical advances.
Peer Review Process:
All manuscripts undergo peer review by international experts to ensure quality and rigor. The journal also welcomes Letters to the Editor, which will be considered for publication.