Protein Nutrition for Endurance Athletes: A Metabolic Focus on Promoting Recovery and Training Adaptation

IF 9.3 1区 医学 Q1 SPORT SCIENCES Sports Medicine Pub Date : 2025-03-21 DOI:10.1007/s40279-025-02203-8
Oliver C. Witard, Mark Hearris, Paul T. Morgan
{"title":"Protein Nutrition for Endurance Athletes: A Metabolic Focus on Promoting Recovery and Training Adaptation","authors":"Oliver C. Witard, Mark Hearris, Paul T. Morgan","doi":"10.1007/s40279-025-02203-8","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this narrative review is to provide an evidence-based update on the protein needs of endurance athletes with a focus on high-quality metabolic studies conducted on the topics of recovery and training adaptation over the past decade. We use the term ‘protein needs’ to delineate between the concepts of a daily protein requirement and per meal protein recommendations when devising scientific evidence-based protein guidelines for the endurance athlete to promote post-exercise recovery, enhance the adaptive response to endurance training and improve endurance performance. A habitual protein intake of 1.5 g/kg of body mass (BM)<sup>−1</sup>·day<sup>−1</sup> is typical in male and female endurance athletes. Based on findings from a series of contemporary protein requirement studies, the evidence suggests a daily protein intake of ~ 1.8 g·kgBM<sup>−1</sup>·day<sup>−1</sup> should be advocated for endurance athletes, with the caveat that the protein requirement may be further elevated in excess of 2.0 g·kgBM<sup>−1</sup>·day<sup>−1</sup> during periods of carbohydrate-restricted training and on rest days. Regarding protein recommendations, the current lack of metabolic studies that determine the dose response of muscle protein synthesis to protein ingestion in relation to endurance exercise makes it difficult to present definitive guidelines on optimal per meal protein intakes for endurance athletes. Moreover, there remains no compelling evidence that co-ingesting protein with carbohydrate before or during endurance exercise confers any performance advantage, nor facilitates the resynthesis of liver or muscle glycogen stores during recovery, at least when carbohydrate recommendations are met. However, recent evidence suggests a role for protein nutrition in optimising the adaptive metabolic response to endurance training under conditions of low carbohydrate and/or energy availability that represent increasingly popular periodised strategies for endurance athletes.</p>","PeriodicalId":21969,"journal":{"name":"Sports Medicine","volume":"33 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40279-025-02203-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this narrative review is to provide an evidence-based update on the protein needs of endurance athletes with a focus on high-quality metabolic studies conducted on the topics of recovery and training adaptation over the past decade. We use the term ‘protein needs’ to delineate between the concepts of a daily protein requirement and per meal protein recommendations when devising scientific evidence-based protein guidelines for the endurance athlete to promote post-exercise recovery, enhance the adaptive response to endurance training and improve endurance performance. A habitual protein intake of 1.5 g/kg of body mass (BM)−1·day−1 is typical in male and female endurance athletes. Based on findings from a series of contemporary protein requirement studies, the evidence suggests a daily protein intake of ~ 1.8 g·kgBM−1·day−1 should be advocated for endurance athletes, with the caveat that the protein requirement may be further elevated in excess of 2.0 g·kgBM−1·day−1 during periods of carbohydrate-restricted training and on rest days. Regarding protein recommendations, the current lack of metabolic studies that determine the dose response of muscle protein synthesis to protein ingestion in relation to endurance exercise makes it difficult to present definitive guidelines on optimal per meal protein intakes for endurance athletes. Moreover, there remains no compelling evidence that co-ingesting protein with carbohydrate before or during endurance exercise confers any performance advantage, nor facilitates the resynthesis of liver or muscle glycogen stores during recovery, at least when carbohydrate recommendations are met. However, recent evidence suggests a role for protein nutrition in optimising the adaptive metabolic response to endurance training under conditions of low carbohydrate and/or energy availability that represent increasingly popular periodised strategies for endurance athletes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sports Medicine
Sports Medicine 医学-运动科学
CiteScore
18.40
自引率
5.10%
发文量
165
审稿时长
6-12 weeks
期刊介绍: Sports Medicine focuses on providing definitive and comprehensive review articles that interpret and evaluate current literature, aiming to offer insights into research findings in the sports medicine and exercise field. The journal covers major topics such as sports medicine and sports science, medical syndromes associated with sport and exercise, clinical medicine's role in injury prevention and treatment, exercise for rehabilitation and health, and the application of physiological and biomechanical principles to specific sports. Types of Articles: Review Articles: Definitive and comprehensive reviews that interpret and evaluate current literature to provide rationale for and application of research findings. Leading/Current Opinion Articles: Overviews of contentious or emerging issues in the field. Original Research Articles: High-quality research articles. Enhanced Features: Additional features like slide sets, videos, and animations aimed at increasing the visibility, readership, and educational value of the journal's content. Plain Language Summaries: Summaries accompanying articles to assist readers in understanding important medical advances. Peer Review Process: All manuscripts undergo peer review by international experts to ensure quality and rigor. The journal also welcomes Letters to the Editor, which will be considered for publication.
期刊最新文献
Physical Therapies for Delayed-Onset Muscle Soreness: An Umbrella and Mapping Systematic Review with Meta-meta-analysis A Neutral Risk Framework for Active Participation Across the Lifespan: A Call to Action for Using Risk in Movement Contexts as a Tool for Human Flourishing Protein Nutrition for Endurance Athletes: A Metabolic Focus on Promoting Recovery and Training Adaptation Effects of Anticipation and Dual-Tasking on Lower Limb Biomechanics While Performing Change-of-Direction Tasks in Physically Active Individuals: A Systematic Review with Meta-Analysis Authors' Response to Nicolò et al.: "A Ventilatory Control Model Explaining the Respiratory Compensation Point".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1