{"title":"Metal co-factors to enhance catalytic activity of short prion-derived peptide sequences.","authors":"Nimisha A Mavlankar, Antarlina Maulik, Asish Pal","doi":"10.1016/bs.mie.2024.02.003","DOIUrl":null,"url":null,"abstract":"<p><p>Development of biomolecular enzyme mimics to efficiently catalyse biochemical reactions are of prime relevance for the bulk scale production of industrially relevant biocatalyst. In this regard, amyloidogenic peptides act as suitable self-assembling scaffolds, providing stable nanostructures with high surface area facilitating biocatalysis. Herein, we rationally design two positional amyloidogenic peptide isomers, \"Fmoc-VYYAHH (1)\" and \"Fmoc-VHHAYY (2)\" considering catalytic and metal binding affinity of histidine and tyrosine when placed in periphery vs. inner core of the peptide sequence. With an ultimate objective of designing metalloenzyme mimic, we choose Co<sup>2+</sup> and Cu<sup>2+</sup> as divalent transition metal cations for peptide complexation to aid in catalysis. After optimizing self-assembly of innate peptides, we investigate metal-peptide binding ratio and co-ordination, finally selecting 1:1 peptide metal complex suitable for biocatalysis. Metallopeptides act as better catalysts than the innate peptides as acyl esterase when tyrosines were present at the periphery. Kinetic parameters for assessing hydrolysis rate were calculated by fitting data into Michaelis-Menten and Lineweaver Burk plots. Catalytic activity is altered depending on the stability of peptide metal complexes. 2-Cu acting as the best biocatalyst with a kcat/K<sub>M</sub> = 0.08 M/s. The protocols mentioned in this chapter meticulously cover the design, synthesis, self-assembly and enzyme kinetics.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.02.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Development of biomolecular enzyme mimics to efficiently catalyse biochemical reactions are of prime relevance for the bulk scale production of industrially relevant biocatalyst. In this regard, amyloidogenic peptides act as suitable self-assembling scaffolds, providing stable nanostructures with high surface area facilitating biocatalysis. Herein, we rationally design two positional amyloidogenic peptide isomers, "Fmoc-VYYAHH (1)" and "Fmoc-VHHAYY (2)" considering catalytic and metal binding affinity of histidine and tyrosine when placed in periphery vs. inner core of the peptide sequence. With an ultimate objective of designing metalloenzyme mimic, we choose Co2+ and Cu2+ as divalent transition metal cations for peptide complexation to aid in catalysis. After optimizing self-assembly of innate peptides, we investigate metal-peptide binding ratio and co-ordination, finally selecting 1:1 peptide metal complex suitable for biocatalysis. Metallopeptides act as better catalysts than the innate peptides as acyl esterase when tyrosines were present at the periphery. Kinetic parameters for assessing hydrolysis rate were calculated by fitting data into Michaelis-Menten and Lineweaver Burk plots. Catalytic activity is altered depending on the stability of peptide metal complexes. 2-Cu acting as the best biocatalyst with a kcat/KM = 0.08 M/s. The protocols mentioned in this chapter meticulously cover the design, synthesis, self-assembly and enzyme kinetics.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.