{"title":"Leveraging Saccharomyces cerevisiae for ADAR research: From high-yield purification to high-throughput screening and therapeutic applications.","authors":"Adi Akira, Erez Levanon, Shay Ben Aroya","doi":"10.1016/bs.mie.2024.11.026","DOIUrl":null,"url":null,"abstract":"<p><p>Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems. The chapter highlights the successful application of yeast in high-throughput screening platforms that identify key structural motifs and substrate preferences of ADARs, showcasing its utility in revealing complex enzyme mechanics. Furthermore, we discuss the development of yeast-based systems to optimize guide RNA sequences for site-directed RNA editing (SDRE), demonstrating how these systems can be employed to refine therapeutic strategies targeting genetic mutations. Additionally, exogenous expression of ADARs from various species in yeast has shed light on enzyme potency and substrate recognition across different temperatures, offering insights into evolutionary adaptations. Overall, Saccharomyces cerevisiae has proven to be an invaluable asset in ADAR research, facilitating significant advances in our understanding of RNA editing mechanisms and therapeutic applications.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"710 ","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems. The chapter highlights the successful application of yeast in high-throughput screening platforms that identify key structural motifs and substrate preferences of ADARs, showcasing its utility in revealing complex enzyme mechanics. Furthermore, we discuss the development of yeast-based systems to optimize guide RNA sequences for site-directed RNA editing (SDRE), demonstrating how these systems can be employed to refine therapeutic strategies targeting genetic mutations. Additionally, exogenous expression of ADARs from various species in yeast has shed light on enzyme potency and substrate recognition across different temperatures, offering insights into evolutionary adaptations. Overall, Saccharomyces cerevisiae has proven to be an invaluable asset in ADAR research, facilitating significant advances in our understanding of RNA editing mechanisms and therapeutic applications.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.