Alexandria L Quillin, Benoît Arnould, Steve D Knutson, Tatiana F Flores, Jennifer M Heemstra
{"title":"EndoVIA for quantifying A-to-I editing and mapping the subcellular localization of edited transcripts.","authors":"Alexandria L Quillin, Benoît Arnould, Steve D Knutson, Tatiana F Flores, Jennifer M Heemstra","doi":"10.1016/bs.mie.2024.11.029","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited. Widely used methods require RNA extraction and pooling that ultimately erases subcellular localization and cell-to-cell variation, which may be critical to understanding misregulation. To overcome these challenges, we recently developed Endonuclease V Immunostaining Assay (EndoVIA) to selectively detect and visualize A-to-I edited RNA in situ. In this chapter, we describe in detail how to prepare cell samples, stain A-to-I edited transcripts with EndoVIA, quantify global inosine abundance, and visualize the subcellular localization of inosine-containing RNAs at the single molecule level.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"710 ","pages":"99-130"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited. Widely used methods require RNA extraction and pooling that ultimately erases subcellular localization and cell-to-cell variation, which may be critical to understanding misregulation. To overcome these challenges, we recently developed Endonuclease V Immunostaining Assay (EndoVIA) to selectively detect and visualize A-to-I edited RNA in situ. In this chapter, we describe in detail how to prepare cell samples, stain A-to-I edited transcripts with EndoVIA, quantify global inosine abundance, and visualize the subcellular localization of inosine-containing RNAs at the single molecule level.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.