CRISPR/Cas-based CAR-T cells: production and application.

IF 9.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomarker Research Pub Date : 2024-05-31 DOI:10.1186/s40364-024-00602-z
Ping Song, Qiqi Zhang, Zhiyong Xu, Yueli Shi, Ruirui Jing, Dingcun Luo
{"title":"CRISPR/Cas-based CAR-T cells: production and application.","authors":"Ping Song, Qiqi Zhang, Zhiyong Xu, Yueli Shi, Ruirui Jing, Dingcun Luo","doi":"10.1186/s40364-024-00602-z","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor T cell (CAR-T) therapy has revolutionized the treatment approach for cancer, autoimmune disease, and heart disease. The integration of CAR into T cells is typically facilitated by retroviral or lentiviral vectors. However, the random insertion of CARs can lead to issues like clonal expansion, oncogenic transformation, variegated transgene expression, and transcriptional silencing. The advent of precise gene editing technology, like Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), allows for controlled and precise genome modification, facilitating the translation of CAR-T research to the clinical applications. This review aims to provide a comprehensive analysis of the application of CRISPR gene editing techniques in the context of precise deletion and insertion methodologies, with a specific focus on their potential for enhancing the development and utilization of CAR-T cell therapy.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140991/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-024-00602-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chimeric antigen receptor T cell (CAR-T) therapy has revolutionized the treatment approach for cancer, autoimmune disease, and heart disease. The integration of CAR into T cells is typically facilitated by retroviral or lentiviral vectors. However, the random insertion of CARs can lead to issues like clonal expansion, oncogenic transformation, variegated transgene expression, and transcriptional silencing. The advent of precise gene editing technology, like Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), allows for controlled and precise genome modification, facilitating the translation of CAR-T research to the clinical applications. This review aims to provide a comprehensive analysis of the application of CRISPR gene editing techniques in the context of precise deletion and insertion methodologies, with a specific focus on their potential for enhancing the development and utilization of CAR-T cell therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CRISPR/Cas 的 CAR-T 细胞:生产与应用。
嵌合抗原受体 T 细胞(CAR-T)疗法彻底改变了癌症、自身免疫性疾病和心脏病的治疗方法。通常通过逆转录病毒或慢病毒载体将 CAR 整合到 T 细胞中。然而,CAR 的随机插入会导致克隆扩增、致癌转化、转基因表达变异和转录沉默等问题。精确基因编辑技术的出现,如CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats),可以对基因组进行可控和精确的修饰,促进了CAR-T研究向临床应用的转化。本综述旨在全面分析 CRISPR 基因编辑技术在精确缺失和插入方法方面的应用,特别关注其在提高 CAR-T 细胞疗法的开发和利用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomarker Research
Biomarker Research Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍: Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.
期刊最新文献
Comparison and combination of mutation and methylation-based urine tests for bladder cancer detection. Advances in CAR-T therapy for central nervous system tumors. The double-edged role and therapeutic potential of TREM2 in atherosclerosis. Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy. Targeting NOX2 and glycolytic metabolism as a therapeutic strategy in acute myeloid leukaemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1