SIMS: A deep-learning label transfer tool for single-cell RNA sequencing analysis.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-06-12 Epub Date: 2024-05-31 DOI:10.1016/j.xgen.2024.100581
Jesus Gonzalez-Ferrer, Julian Lehrer, Ash O'Farrell, Benedict Paten, Mircea Teodorescu, David Haussler, Vanessa D Jonsson, Mohammed A Mostajo-Radji
{"title":"SIMS: A deep-learning label transfer tool for single-cell RNA sequencing analysis.","authors":"Jesus Gonzalez-Ferrer, Julian Lehrer, Ash O'Farrell, Benedict Paten, Mircea Teodorescu, David Haussler, Vanessa D Jonsson, Mohammed A Mostajo-Radji","doi":"10.1016/j.xgen.2024.100581","DOIUrl":null,"url":null,"abstract":"<p><p>Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for single cell), a low-code data-efficient pipeline for single-cell RNA classification. We benchmark SIMS against datasets from different tissues and species. We demonstrate SIMS's efficacy in classifying cells in the brain, achieving high accuracy even with small training sets (<3,500 cells) and across different samples. SIMS accurately predicts neuronal subtypes in the developing brain, shedding light on genetic changes during neuronal differentiation and postmitotic fate refinement. Finally, we apply SIMS to single-cell RNA datasets of cortical organoids to predict cell identities and uncover genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for single cell), a low-code data-efficient pipeline for single-cell RNA classification. We benchmark SIMS against datasets from different tissues and species. We demonstrate SIMS's efficacy in classifying cells in the brain, achieving high accuracy even with small training sets (<3,500 cells) and across different samples. SIMS accurately predicts neuronal subtypes in the developing brain, shedding light on genetic changes during neuronal differentiation and postmitotic fate refinement. Finally, we apply SIMS to single-cell RNA datasets of cortical organoids to predict cell identities and uncover genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIMS:用于单细胞 RNA 测序分析的深度学习标签转移工具。
细胞图谱是对新样本进行自动细胞标记的重要参考,但现有的分类算法在准确性方面却举步维艰。在此,我们介绍 SIMS(用于单细胞的可扩展、可解释的机器学习),这是一种用于单细胞 RNA 分类的低代码数据高效管道。我们针对不同组织和物种的数据集对 SIMS 进行了基准测试。我们证明了 SIMS 在大脑细胞分类中的功效,即使使用较小的训练集也能达到很高的准确率(见图 1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
AI-empowered perturbation proteomics for complex biological systems. Genetics of Latin American Diversity Project: Insights into population genetics and association studies in admixed groups in the Americas. Mechanism-free repurposing of drugs for C9orf72-related ALS/FTD using large-scale genomic data. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1