Deep learning imputes DNA methylation states in single cells and enhances the detection of epigenetic alterations in schizophrenia.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2025-02-15 DOI:10.1016/j.xgen.2025.100774
Jiyun Zhou, Chongyuan Luo, Hanqing Liu, Matthew G Heffel, Richard E Straub, Joel E Kleinman, Thomas M Hyde, Joseph R Ecker, Daniel R Weinberger, Shizhong Han
{"title":"Deep learning imputes DNA methylation states in single cells and enhances the detection of epigenetic alterations in schizophrenia.","authors":"Jiyun Zhou, Chongyuan Luo, Hanqing Liu, Matthew G Heffel, Richard E Straub, Joel E Kleinman, Thomas M Hyde, Joseph R Ecker, Daniel R Weinberger, Shizhong Han","doi":"10.1016/j.xgen.2025.100774","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation (DNAm) is a key epigenetic mark with essential roles in gene regulation, mammalian development, and human diseases. Single-cell technologies enable profiling DNAm at cytosines in individual cells, but they often suffer from low coverage for CpG sites. We introduce scMeFormer, a transformer-based deep learning model for imputing DNAm states at each CpG site in single cells. Comprehensive evaluations across five single-nucleus DNAm datasets from human and mouse demonstrate scMeFormer's superior performance over alternative models, achieving high-fidelity imputation even with coverage reduced to 10% of original CpG sites. Applying scMeFormer to a single-nucleus DNAm dataset from the prefrontal cortex of patients with schizophrenia and controls identified thousands of schizophrenia-associated differentially methylated regions that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia. We anticipate that scMeFormer will be a valuable tool for advancing single-cell DNAm studies.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100774"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA methylation (DNAm) is a key epigenetic mark with essential roles in gene regulation, mammalian development, and human diseases. Single-cell technologies enable profiling DNAm at cytosines in individual cells, but they often suffer from low coverage for CpG sites. We introduce scMeFormer, a transformer-based deep learning model for imputing DNAm states at each CpG site in single cells. Comprehensive evaluations across five single-nucleus DNAm datasets from human and mouse demonstrate scMeFormer's superior performance over alternative models, achieving high-fidelity imputation even with coverage reduced to 10% of original CpG sites. Applying scMeFormer to a single-nucleus DNAm dataset from the prefrontal cortex of patients with schizophrenia and controls identified thousands of schizophrenia-associated differentially methylated regions that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia. We anticipate that scMeFormer will be a valuable tool for advancing single-cell DNAm studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Contribution of germline and somatic mutations to risk of neuromyelitis optica spectrum disorder. Multiomic QTL mapping reveals phenotypic complexity of GWAS loci and prioritizes putative causal variants. Deep learning imputes DNA methylation states in single cells and enhances the detection of epigenetic alterations in schizophrenia. Genetic mapping of serum metabolome to chronic diseases among Han Chinese. Single-cell DNA sequencing reveals pervasive positive selection throughout preleukemic evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1