Jiyun Zhou, Chongyuan Luo, Hanqing Liu, Matthew G Heffel, Richard E Straub, Joel E Kleinman, Thomas M Hyde, Joseph R Ecker, Daniel R Weinberger, Shizhong Han
{"title":"Deep learning imputes DNA methylation states in single cells and enhances the detection of epigenetic alterations in schizophrenia.","authors":"Jiyun Zhou, Chongyuan Luo, Hanqing Liu, Matthew G Heffel, Richard E Straub, Joel E Kleinman, Thomas M Hyde, Joseph R Ecker, Daniel R Weinberger, Shizhong Han","doi":"10.1016/j.xgen.2025.100774","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation (DNAm) is a key epigenetic mark with essential roles in gene regulation, mammalian development, and human diseases. Single-cell technologies enable profiling DNAm at cytosines in individual cells, but they often suffer from low coverage for CpG sites. We introduce scMeFormer, a transformer-based deep learning model for imputing DNAm states at each CpG site in single cells. Comprehensive evaluations across five single-nucleus DNAm datasets from human and mouse demonstrate scMeFormer's superior performance over alternative models, achieving high-fidelity imputation even with coverage reduced to 10% of original CpG sites. Applying scMeFormer to a single-nucleus DNAm dataset from the prefrontal cortex of patients with schizophrenia and controls identified thousands of schizophrenia-associated differentially methylated regions that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia. We anticipate that scMeFormer will be a valuable tool for advancing single-cell DNAm studies.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100774"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methylation (DNAm) is a key epigenetic mark with essential roles in gene regulation, mammalian development, and human diseases. Single-cell technologies enable profiling DNAm at cytosines in individual cells, but they often suffer from low coverage for CpG sites. We introduce scMeFormer, a transformer-based deep learning model for imputing DNAm states at each CpG site in single cells. Comprehensive evaluations across five single-nucleus DNAm datasets from human and mouse demonstrate scMeFormer's superior performance over alternative models, achieving high-fidelity imputation even with coverage reduced to 10% of original CpG sites. Applying scMeFormer to a single-nucleus DNAm dataset from the prefrontal cortex of patients with schizophrenia and controls identified thousands of schizophrenia-associated differentially methylated regions that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia. We anticipate that scMeFormer will be a valuable tool for advancing single-cell DNAm studies.