{"title":"A double-layer crowd evacuation simulation method based on deep reinforcement learning","authors":"Yong Zhang, Bo Yang, Jianlin Zhu","doi":"10.1002/cav.2280","DOIUrl":null,"url":null,"abstract":"<p>Existing crowd evacuation simulation methods commonly face challenges of low efficiency in path planning and insufficient realism in pedestrian movement during the evacuation process. In this study, we propose a novel crowd evacuation path planning approach based on the learning curve–deep deterministic policy gradient (LC-DDPG) algorithm. The algorithm incorporates dynamic experience pool and a priority experience sampling strategy, enhancing convergence speed and achieving higher average rewards, thus efficiently enabling global path planning. Building upon this foundation, we introduce a double-layer method for crowd evacuation using deep reinforcement learning. Specifically, within each group, individuals are categorized into leaders and followers. At the top layer, we employ the LC-DDPG algorithm to perform global path planning for the leaders. Simultaneously, at the bottom layer, an enhanced social force model guides the followers to avoid obstacles and follow the leaders during evacuation. We implemented a crowd evacuation simulation platform. Experimental results show that our proposed method has high path planning efficiency and can generate more realistic pedestrian trajectories in different scenarios and crowd sizes.</p>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.2280","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Existing crowd evacuation simulation methods commonly face challenges of low efficiency in path planning and insufficient realism in pedestrian movement during the evacuation process. In this study, we propose a novel crowd evacuation path planning approach based on the learning curve–deep deterministic policy gradient (LC-DDPG) algorithm. The algorithm incorporates dynamic experience pool and a priority experience sampling strategy, enhancing convergence speed and achieving higher average rewards, thus efficiently enabling global path planning. Building upon this foundation, we introduce a double-layer method for crowd evacuation using deep reinforcement learning. Specifically, within each group, individuals are categorized into leaders and followers. At the top layer, we employ the LC-DDPG algorithm to perform global path planning for the leaders. Simultaneously, at the bottom layer, an enhanced social force model guides the followers to avoid obstacles and follow the leaders during evacuation. We implemented a crowd evacuation simulation platform. Experimental results show that our proposed method has high path planning efficiency and can generate more realistic pedestrian trajectories in different scenarios and crowd sizes.
期刊介绍:
With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.