{"title":"Thermo-mechanical interaction in two-temperature time-differential dual-phase-lagging materials under gravitational field influence","authors":"Nantu Sarkar","doi":"10.1007/s11043-024-09712-5","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the thermo-mechanical behavior of generalized thermoelastic mediums under the influence of gravitational fields, incorporating two-temperature effects through the Lord–Shulman and dual-phase-lag models. Focusing on a plane surface subjected to an arbitrary normal force and maintained at isothermal conditions, analytical expressions for conductive temperature, thermodynamic temperature, displacement components, and force stresses are derived using normal mode analysis. Numerical results, presented graphically, consider the application of thermal force. Comparative analyses between the dual-phase-lag and Lord-Shulman models are conducted, examining the impact of gravity and the two-temperature effect. Engineering applications of these findings can enhance the understanding of thermal management in materials subjected to varying gravitational environments, such as aerospace structures and thermal barrier coatings.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"18 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11043-024-09712-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the thermo-mechanical behavior of generalized thermoelastic mediums under the influence of gravitational fields, incorporating two-temperature effects through the Lord–Shulman and dual-phase-lag models. Focusing on a plane surface subjected to an arbitrary normal force and maintained at isothermal conditions, analytical expressions for conductive temperature, thermodynamic temperature, displacement components, and force stresses are derived using normal mode analysis. Numerical results, presented graphically, consider the application of thermal force. Comparative analyses between the dual-phase-lag and Lord-Shulman models are conducted, examining the impact of gravity and the two-temperature effect. Engineering applications of these findings can enhance the understanding of thermal management in materials subjected to varying gravitational environments, such as aerospace structures and thermal barrier coatings.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.