{"title":"Optoelectronic transistor based on InSe/MoS2 heterostructure for multimodal nociceptor","authors":"Haobin Wang, Yifei Yang, Niannian Yu, Ziqi Chen, Junhui Yuan, Jiafu Wang","doi":"10.1002/pssr.202400111","DOIUrl":null,"url":null,"abstract":"The artificial nociceptor is a device that simulates the biological nociception system, which has a wide range of applications in the fields of medicine, rehabilitation, and robotics. Multimodal nociceptors can respond to diverse stimuli, including visual, mechanical, and thermal, etc., and then convert them into neural signals for processing by the brain. Here, a back‐gate optoelectronic transistor based on 2‐dimensional InSe/MoS<jats:sub>2</jats:sub> heterostructure is demonstrated, by employing energy band alignment of the heterojunction, the device exhibits high sensitivity (10<jats:sup>6</jats:sup>) and high responsivity (330 AW<jats:sup>‐1</jats:sup>) to harmful UV irradiation, which can be exploited to emulate the key features of nociceptors, including “threshold”, “relaxation”, “no adaptation” and “sensitization”. Moreover, the device can be operated in a two‐terminal mode, memristive characteristics is obtained through applying source‐drain voltages. Then, artificial nociceptive behaviors respond to external electrical pulses have been successfully emulated. Finally, the modulation of nociceptive sensitivity can be achieved through the controlling gate bias, which fully demonstrates the potential of our device for the application of bio‐mimetic multimodal artificial nociceptors in future neuromorphic sensory system.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400111","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The artificial nociceptor is a device that simulates the biological nociception system, which has a wide range of applications in the fields of medicine, rehabilitation, and robotics. Multimodal nociceptors can respond to diverse stimuli, including visual, mechanical, and thermal, etc., and then convert them into neural signals for processing by the brain. Here, a back‐gate optoelectronic transistor based on 2‐dimensional InSe/MoS2 heterostructure is demonstrated, by employing energy band alignment of the heterojunction, the device exhibits high sensitivity (106) and high responsivity (330 AW‐1) to harmful UV irradiation, which can be exploited to emulate the key features of nociceptors, including “threshold”, “relaxation”, “no adaptation” and “sensitization”. Moreover, the device can be operated in a two‐terminal mode, memristive characteristics is obtained through applying source‐drain voltages. Then, artificial nociceptive behaviors respond to external electrical pulses have been successfully emulated. Finally, the modulation of nociceptive sensitivity can be achieved through the controlling gate bias, which fully demonstrates the potential of our device for the application of bio‐mimetic multimodal artificial nociceptors in future neuromorphic sensory system.This article is protected by copyright. All rights reserved.
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.