{"title":"Investigation on the external characteristics of permanent magnet synchronous mechatronic-electro-hydraulic coupler","authors":"Lingfeng Zhang, Hongxin Zhang, Baoquan Liu, Zhen Zhang, Yiming Jiang","doi":"10.1177/16878132241253667","DOIUrl":null,"url":null,"abstract":"The efficient utilization of energy stands as a paramount priority on the international stage. Currently, there are various issues associated with the multi-power source couplers in automobiles. Addressing concerns related to the large size, poor reliability, low durability, and inefficient energy conversion of these couplers, a novel Permanent Magnet Synchronous Mechatronic-Electro-Hydraulic Coupler (MEHC) has been proposed. This system integrates a traditional permanent magnet synchronous machine with a swash plate axial piston pump/motor, enabling the mutual conversion of electrical, mechanical, and hydraulic energy. This paper primarily investigates the losses and efficiency of MEHC in both pure electric motor mode and electro-hydraulic coupling mode. Compared to our group’s previous Induction Asynchronous Mechatronic-Electro-Hydraulic Coupler (IA-MEHC), MEHC demonstrates lower losses and higher torque. Additionally, the paper also computes the electrical power external characteristics and comprehensive power external characteristics of the MEHC in pure electric motor mode. In the calculations within this paper, electric power is the primary power source, and in the electro-hydraulic coupling mode, hydraulics only provide auxiliary assistance. The research outlined in this paper lays a robust groundwork for future advancements and innovations in MEHC technology. With the capacity to bolster its performance, efficiency, and reliability, this groundwork holds the promise of accelerating the rapid development and widespread adoption of MEHC in automotive applications.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"78 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241253667","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The efficient utilization of energy stands as a paramount priority on the international stage. Currently, there are various issues associated with the multi-power source couplers in automobiles. Addressing concerns related to the large size, poor reliability, low durability, and inefficient energy conversion of these couplers, a novel Permanent Magnet Synchronous Mechatronic-Electro-Hydraulic Coupler (MEHC) has been proposed. This system integrates a traditional permanent magnet synchronous machine with a swash plate axial piston pump/motor, enabling the mutual conversion of electrical, mechanical, and hydraulic energy. This paper primarily investigates the losses and efficiency of MEHC in both pure electric motor mode and electro-hydraulic coupling mode. Compared to our group’s previous Induction Asynchronous Mechatronic-Electro-Hydraulic Coupler (IA-MEHC), MEHC demonstrates lower losses and higher torque. Additionally, the paper also computes the electrical power external characteristics and comprehensive power external characteristics of the MEHC in pure electric motor mode. In the calculations within this paper, electric power is the primary power source, and in the electro-hydraulic coupling mode, hydraulics only provide auxiliary assistance. The research outlined in this paper lays a robust groundwork for future advancements and innovations in MEHC technology. With the capacity to bolster its performance, efficiency, and reliability, this groundwork holds the promise of accelerating the rapid development and widespread adoption of MEHC in automotive applications.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering