{"title":"TFET Circuit Configurations Operating Below 60 mV/dec","authors":"Gautham Rangasamy;Zhongyunshen Zhu;Lars Ohlsson Fhager;Lars-Erik Wernersson","doi":"10.1109/TNANO.2024.3407360","DOIUrl":null,"url":null,"abstract":"Tunnel Field-Effect Transistors (TFETs) offer more energy efficient alternative to CMOS for design of low power circuits. In spite of this potential, circuits based on TFETs have not been experimentally demonstrated so far. In this letter, we explore TFET fabrication and basic functionality of n-TFET based circuits in the following configurations: a current mirror, a diode-connected inverter, and a cascode. Individual TFETs in the circuit operate well below 60 mV/dec operation with minimum achieved subthreshold swing (SS) of 30 mV/dec at drain voltage of 400 mV. To analyse the circuit operation, individual devices are connected via FEOL and are biased at 300 mV supply voltage, with an input frequency of 200 kHz. The measured circuit configurations demonstrate the expected functionality.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"441-447"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10542416/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tunnel Field-Effect Transistors (TFETs) offer more energy efficient alternative to CMOS for design of low power circuits. In spite of this potential, circuits based on TFETs have not been experimentally demonstrated so far. In this letter, we explore TFET fabrication and basic functionality of n-TFET based circuits in the following configurations: a current mirror, a diode-connected inverter, and a cascode. Individual TFETs in the circuit operate well below 60 mV/dec operation with minimum achieved subthreshold swing (SS) of 30 mV/dec at drain voltage of 400 mV. To analyse the circuit operation, individual devices are connected via FEOL and are biased at 300 mV supply voltage, with an input frequency of 200 kHz. The measured circuit configurations demonstrate the expected functionality.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.