Certified Randomness in Tight Space

Andreas Fyrillas, Boris Bourdoncle, Alexandre Maïnos, Pierre-Emmanuel Emeriau, Kayleigh Start, Nico Margaria, Martina Morassi, Aristide Lemaître, Isabelle Sagnes, Petr Stepanov, Thi Huong Au, Sébastien Boissier, Niccolo Somaschi, Nicolas Maring, Nadia Belabas, Shane Mansfield
{"title":"Certified Randomness in Tight Space","authors":"Andreas Fyrillas, Boris Bourdoncle, Alexandre Maïnos, Pierre-Emmanuel Emeriau, Kayleigh Start, Nico Margaria, Martina Morassi, Aristide Lemaître, Isabelle Sagnes, Petr Stepanov, Thi Huong Au, Sébastien Boissier, Niccolo Somaschi, Nicolas Maring, Nadia Belabas, Shane Mansfield","doi":"10.1103/prxquantum.5.020348","DOIUrl":null,"url":null,"abstract":"Reliable randomness is a core ingredient in algorithms and applications ranging from numerical simulations to statistical sampling and cryptography. The outcomes of measurements on entangled quantum states can violate Bell inequalities, thus guaranteeing their intrinsic randomness. This constitutes the basis for certified randomness generation. However, this certification requires spacelike separated devices, making it unfit for a compact apparatus. Here we provide a general method for certified randomness generation on a small-scale application-ready device and perform an integrated photonic demonstration combining a solid-state emitter and a glass chip. In contrast to most existing certification protocols, which in the absence of spacelike separation are vulnerable to loopholes inherent to realistic devices, the protocol we implement accounts for information leakage and is thus compatible with emerging compact scalable devices. We demonstrate a two-qubit photonic device that achieves the highest standard in randomness, yet is cut out for real-world applications. The full 94.5-h-long stabilized process harnesses a bright and stable single-photon quantum-dot-based source, feeding into a reconfigurable photonic chip, with stability in the milliradian range on the implemented phases and consistent indistinguishability of the entangled photons above 93%. Using the contextuality framework, we certify private randomness generation and achieve a rate compatible with randomness expansion secure against quantum adversaries.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable randomness is a core ingredient in algorithms and applications ranging from numerical simulations to statistical sampling and cryptography. The outcomes of measurements on entangled quantum states can violate Bell inequalities, thus guaranteeing their intrinsic randomness. This constitutes the basis for certified randomness generation. However, this certification requires spacelike separated devices, making it unfit for a compact apparatus. Here we provide a general method for certified randomness generation on a small-scale application-ready device and perform an integrated photonic demonstration combining a solid-state emitter and a glass chip. In contrast to most existing certification protocols, which in the absence of spacelike separation are vulnerable to loopholes inherent to realistic devices, the protocol we implement accounts for information leakage and is thus compatible with emerging compact scalable devices. We demonstrate a two-qubit photonic device that achieves the highest standard in randomness, yet is cut out for real-world applications. The full 94.5-h-long stabilized process harnesses a bright and stable single-photon quantum-dot-based source, feeding into a reconfigurable photonic chip, with stability in the milliradian range on the implemented phases and consistent indistinguishability of the entangled photons above 93%. Using the contextuality framework, we certify private randomness generation and achieve a rate compatible with randomness expansion secure against quantum adversaries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
狭小空间中的认证随机性
可靠的随机性是从数值模拟到统计采样和密码学等各种算法和应用的核心要素。对纠缠量子态的测量结果可以违反贝尔不等式,从而保证其内在随机性。这构成了认证随机性生成的基础。然而,这种认证需要类似空间的分离设备,因此不适合紧凑型仪器。在这里,我们提供了一种在小型应用就绪设备上生成认证随机性的通用方法,并结合固态发射器和玻璃芯片进行了集成光子演示。与大多数现有的认证协议不同,我们实现的协议考虑到了信息泄漏问题,因此与新兴的紧凑型可扩展设备兼容。我们展示了一种双量子比特光子设备,它达到了随机性的最高标准,但却不适合现实世界的应用。全长 94.5 小时的稳定过程利用了明亮稳定的单光子量子点源,并将其输入可重构的光子芯片,实现了毫弧度范围内的相位稳定性,纠缠光子的一致性无差别率超过 93%。利用上下文框架,我们认证了私人随机性的生成,并实现了与随机性扩展相兼容的速率,可安全对抗量子对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1