Clinical Note Structural Knowledge Improves Word Sense Disambiguation.

Fangyi Chen, Gongbo Zhang, Si Chen, Tiffany Callahan, Chunhua Weng
{"title":"Clinical Note Structural Knowledge Improves Word Sense Disambiguation.","authors":"Fangyi Chen, Gongbo Zhang, Si Chen, Tiffany Callahan, Chunhua Weng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical notes are full of ambiguous medical abbreviations. Contextual knowledge has been leveraged by recent learning-based approaches for sense disambiguation. Previous findings indicated that structural elements of clinical notes entail useful characteristics for informing different interpretations of abbreviations, yet they have remained underutilized and have not been fully investigated. To our best knowledge, the only study exploring note structures simply enumerated the headers in the notes, where such representations are not semantically meaningful. This paper describes a learning-based approach using the note structure represented by the semantic types predefined in Unified Medical Language System (UMLS). We evaluated the representation in addition to the widely used N-gram with three learning models on two different datasets. Experiments indicate that our feature augmentation consistently improved model performance for abbreviation disambiguation, with the optimal F1 score of 0.93.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141859/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical notes are full of ambiguous medical abbreviations. Contextual knowledge has been leveraged by recent learning-based approaches for sense disambiguation. Previous findings indicated that structural elements of clinical notes entail useful characteristics for informing different interpretations of abbreviations, yet they have remained underutilized and have not been fully investigated. To our best knowledge, the only study exploring note structures simply enumerated the headers in the notes, where such representations are not semantically meaningful. This paper describes a learning-based approach using the note structure represented by the semantic types predefined in Unified Medical Language System (UMLS). We evaluated the representation in addition to the widely used N-gram with three learning models on two different datasets. Experiments indicate that our feature augmentation consistently improved model performance for abbreviation disambiguation, with the optimal F1 score of 0.93.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
临床笔记结构知识改善了词义消歧。
临床笔记中充满了模棱两可的医学缩写。最近基于学习的方法利用上下文知识进行意义消歧。以前的研究结果表明,临床笔记的结构元素包含有用的特征,可为缩写的不同解释提供信息,但这些特征仍未得到充分利用,也未得到充分研究。据我们所知,唯一一项探索笔记结构的研究只是列举了笔记中的标题,而这种表述并不具有语义意义。本文介绍了一种基于学习的方法,该方法使用统一医学语言系统(UMLS)中预定义的语义类型来表示笔记结构。除了广泛使用的 N-gram,我们还在两个不同的数据集上使用三种学习模型对该表示法进行了评估。实验结果表明,我们的特征增强技术持续提高了缩写消歧模型的性能,最佳 F1 得分为 0.93。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records. Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1