Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records.

Yiye Zhang, Rochelle Joly, Ashley N Beecy, Samen Principe, Sujit Satpathy, Anatoly Gore, Tom Reilly, Mitchel Lang, Nagi Sathi, Carlos Uy, Matt Adams, Mark Israel
{"title":"Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records.","authors":"Yiye Zhang, Rochelle Joly, Ashley N Beecy, Samen Principe, Sujit Satpathy, Anatoly Gore, Tom Reilly, Mitchel Lang, Nagi Sathi, Carlos Uy, Matt Adams, Mark Israel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study describes the deployment process of an AI-driven clinical decision support (CDS) system to support postpartum depression (PPD) prevention, diagnosis and management. Central to this CDS is an L2-regularized logistic regression model trained on electronic health record (EHR) data at an academic medical center, and subsequently refined through a broader dataset from a consortium to ensure its generalizability and fairness. The deployment architecture leveraged Microsoft Azure to facilitate a scalable, secure, and efficient operational framework. We used Fast Healthcare Interoperability Resources (FHIR) for data extraction and ingestion between the two systems. Continuous Integration/Continuous Deployment pipelines automated the deployment and ongoing maintenance, ensuring the system's adaptability to evolving clinical data. Along the technical preparation, we focused on a seamless integration of the CDS within the clinical workflow, presenting risk assessment directly within the clinician schedule and providing options for subsequent actions. The developed CDS is expected to drive a PPD clinical pathway to enable efficient PPD risk management.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study describes the deployment process of an AI-driven clinical decision support (CDS) system to support postpartum depression (PPD) prevention, diagnosis and management. Central to this CDS is an L2-regularized logistic regression model trained on electronic health record (EHR) data at an academic medical center, and subsequently refined through a broader dataset from a consortium to ensure its generalizability and fairness. The deployment architecture leveraged Microsoft Azure to facilitate a scalable, secure, and efficient operational framework. We used Fast Healthcare Interoperability Resources (FHIR) for data extraction and ingestion between the two systems. Continuous Integration/Continuous Deployment pipelines automated the deployment and ongoing maintenance, ensuring the system's adaptability to evolving clinical data. Along the technical preparation, we focused on a seamless integration of the CDS within the clinical workflow, presenting risk assessment directly within the clinician schedule and providing options for subsequent actions. The developed CDS is expected to drive a PPD clinical pathway to enable efficient PPD risk management.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在电子健康记录中实施产后抑郁症的机器学习风险预测模型。
本研究描述了人工智能驱动的临床决策支持(CDS)系统的部署过程,该系统旨在支持产后抑郁症(PPD)的预防、诊断和管理。该 CDS 的核心是一个 L2 规则化逻辑回归模型,该模型在一家学术医疗中心的电子健康记录(EHR)数据上进行了训练,随后通过来自一个联盟的更广泛的数据集进行了改进,以确保其通用性和公平性。部署架构利用 Microsoft Azure 来促进可扩展、安全和高效的运行框架。我们使用快速医疗保健互操作性资源(FHIR)在两个系统之间进行数据提取和摄取。持续集成/持续部署管道实现了部署和持续维护的自动化,确保了系统对不断变化的临床数据的适应性。在技术准备方面,我们的重点是将 CDS 无缝集成到临床工作流程中,在临床医生的日程表中直接显示风险评估,并为后续行动提供选项。所开发的 CDS 预计将推动 PPD 临床路径,从而实现高效的 PPD 风险管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records. Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1