Comparative Analysis of Fusion Strategies for Imaging and Non-imaging Data - Use-case of Hospital Discharge Prediction.

Vedant Parikh, Amara Tariq, Bhavik Patel, Imon Banerjee
{"title":"Comparative Analysis of Fusion Strategies for Imaging and Non-imaging Data - Use-case of Hospital Discharge Prediction.","authors":"Vedant Parikh, Amara Tariq, Bhavik Patel, Imon Banerjee","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of future clinical events such as discharge from hospital can not only improve hospital resource management but also provide an indicator of a patient's clinical condition. Within the scope of this work, we perform a comparative analysis of deep learning based fusion strategies against traditional single source models for prediction of discharge from hospital by fusing information encoded in two diverse but relevant data modalities, i.e., chest X-ray images and tabular electronic health records (EHR). We evaluate multiple fusion strategies including late, early and joint fusion in terms of their efficacy for target prediction compared to EHR-only and Image-only predictive models. Results indicated the importance of merging information from two modalities for prediction as fusion models tended to outperform single modality models and indicate that the joint fusion scheme was the most effective for target prediction. Joint fusion model merges the two modalities through a branched neural network that is jointly trained in an end-to-end fashion to extract target-relevant information from both modalities.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141810/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of future clinical events such as discharge from hospital can not only improve hospital resource management but also provide an indicator of a patient's clinical condition. Within the scope of this work, we perform a comparative analysis of deep learning based fusion strategies against traditional single source models for prediction of discharge from hospital by fusing information encoded in two diverse but relevant data modalities, i.e., chest X-ray images and tabular electronic health records (EHR). We evaluate multiple fusion strategies including late, early and joint fusion in terms of their efficacy for target prediction compared to EHR-only and Image-only predictive models. Results indicated the importance of merging information from two modalities for prediction as fusion models tended to outperform single modality models and indicate that the joint fusion scheme was the most effective for target prediction. Joint fusion model merges the two modalities through a branched neural network that is jointly trained in an end-to-end fashion to extract target-relevant information from both modalities.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成像与非成像数据融合策略的比较分析--以出院预测为例。
准确预测未来的临床事件(如出院)不仅能改善医院资源管理,还能提供患者临床状况的指标。在这项工作的范围内,我们通过融合两种不同但相关的数据模式(即胸部 X 光图像和表格式电子健康记录 (EHR))中编码的信息,对基于深度学习的融合策略与传统的单源模型进行了比较分析,以预测出院情况。与纯电子病历和纯图像预测模型相比,我们评估了多种融合策略(包括后期融合、早期融合和联合融合)对目标预测的功效。结果表明,融合两种模式的信息对于预测非常重要,因为融合模型往往优于单一模式模型,并表明联合融合方案对目标预测最为有效。联合融合模型通过一个分支神经网络融合两种模态,该网络以端到端方式进行联合训练,从两种模态中提取目标相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records. Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1