Amir I Mina, Jessi U Espino, Allison M Bradley, Parthasarathy D Thirumala, Kayhan Batmanghelich, Shyam Visweswaran
{"title":"Detecting Cerebral Ischemia From Electroencephalography During Carotid Endarterectomy Using Machine Learning.","authors":"Amir I Mina, Jessi U Espino, Allison M Bradley, Parthasarathy D Thirumala, Kayhan Batmanghelich, Shyam Visweswaran","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring cerebral neuronal activity via electroencephalography (EEG) during surgery can detect ischemia, a precursor to stroke. However, current neurophysiologist-based monitoring is prone to error. In this study, we evaluated machine learning (ML) for efficient and accurate ischemia detection. We trained supervised ML models on a dataset of 802 patients with intraoperative ischemia labels and evaluated them on an independent validation dataset of 30 patients with refined labels from five neurophysiologists. Our results show moderate-to-substantial agreement between neurophysiologists, with Cohen's kappa values between 0.59 and 0.74. Neurophysiologist performance ranged from 58-93% for sensitivity and 83-96% for specificity, while ML models demonstrated comparable ranges of 63-89% and 85-96%. Random Forest (RF), LightGBM (LGBM), and XGBoost RF achieved area under the receiver operating characteristic curve (AUROC) values of 0.92-0.93 and area under the precision-recall curve (AUPRC) values of 0.79-0.83. ML has the potential to improve intraoperative monitoring, enhancing patient safety and reducing costs.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"613-622"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring cerebral neuronal activity via electroencephalography (EEG) during surgery can detect ischemia, a precursor to stroke. However, current neurophysiologist-based monitoring is prone to error. In this study, we evaluated machine learning (ML) for efficient and accurate ischemia detection. We trained supervised ML models on a dataset of 802 patients with intraoperative ischemia labels and evaluated them on an independent validation dataset of 30 patients with refined labels from five neurophysiologists. Our results show moderate-to-substantial agreement between neurophysiologists, with Cohen's kappa values between 0.59 and 0.74. Neurophysiologist performance ranged from 58-93% for sensitivity and 83-96% for specificity, while ML models demonstrated comparable ranges of 63-89% and 85-96%. Random Forest (RF), LightGBM (LGBM), and XGBoost RF achieved area under the receiver operating characteristic curve (AUROC) values of 0.92-0.93 and area under the precision-recall curve (AUPRC) values of 0.79-0.83. ML has the potential to improve intraoperative monitoring, enhancing patient safety and reducing costs.