{"title":"Detecting Multimorbidity Patterns with Association Rule Mining in Patients with Alzheimer's Disease and Related Dementias.","authors":"Razan A El Khalifa, Pui Ying Yew, Chih-Lin Chi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers estimate the number of dementia patients to triple by 2050<sup>1</sup>. Dementia seldom occurs in isolation; it's frequently accompanied by other health conditions<sup>2</sup>. The coexistence of conditions further complicates the management of dementia. In this study, we embarked on an innovative approach, applying association rule mining to analyze National Alzheimer's Coordinating Center (NACC) data. First, we completed a literature review on the utilization of association rules, heatmaps, and network analysis to detect and visualize comorbidities. Then, we conducted a secondary data analysis on the NACC data using association rule mining. This algorithm uncovers associations of comorbidities that are diagnosed together in patients who have Alzheimer's disease and related dementias (ADRD). Also, for these patients, the algorithm provides the probability of a patient developing another comorbidity given the diagnosis of an associated comorbidity. These findings can enhance treatment planning, advance research on high-association diseases, and ultimately enhance healthcare for dementia patients.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"525-534"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers estimate the number of dementia patients to triple by 20501. Dementia seldom occurs in isolation; it's frequently accompanied by other health conditions2. The coexistence of conditions further complicates the management of dementia. In this study, we embarked on an innovative approach, applying association rule mining to analyze National Alzheimer's Coordinating Center (NACC) data. First, we completed a literature review on the utilization of association rules, heatmaps, and network analysis to detect and visualize comorbidities. Then, we conducted a secondary data analysis on the NACC data using association rule mining. This algorithm uncovers associations of comorbidities that are diagnosed together in patients who have Alzheimer's disease and related dementias (ADRD). Also, for these patients, the algorithm provides the probability of a patient developing another comorbidity given the diagnosis of an associated comorbidity. These findings can enhance treatment planning, advance research on high-association diseases, and ultimately enhance healthcare for dementia patients.