Identification and expression profiling of microRNAs in leaf tissues of Foeniculum vulgare Mill. under salinity stress.

Plant signaling & behavior Pub Date : 2024-12-31 Epub Date: 2024-06-02 DOI:10.1080/15592324.2024.2361174
Luis Alberto Bravo-Vázquez, Mariana García-Ortega, Sara Medina-Feria, Aashish Srivastava, Sujay Paul
{"title":"Identification and expression profiling of microRNAs in leaf tissues of <i>Foeniculum vulgare</i> Mill. under salinity stress.","authors":"Luis Alberto Bravo-Vázquez, Mariana García-Ortega, Sara Medina-Feria, Aashish Srivastava, Sujay Paul","doi":"10.1080/15592324.2024.2361174","DOIUrl":null,"url":null,"abstract":"<p><p><i>Foeniculum vulgare</i> Mill. commonly known as fennel, is a globally recognized aromatic medicinal plant and culinary herb with widespread popularity due to its antimicrobial, antioxidant, carminative, and diuretic properties, among others. Although the phenotypic effects of salinity stress have been previously explored in fennel, the molecular mechanisms underlying responses to elevated salinity in this plant remain elusive. MicroRNAs (miRNAs) are tiny, endogenous, and extensively conserved non-coding RNAs (ncRNAs) typically ranging from 20 to 24 nucleotides (nt) in length that play a major role in a myriad of biological functions. In fact, a number of miRNAs have been extensively associated with responses to abiotic stress in plants. Consequently, employing computational methodologies and rigorous filtering criteria, 40 putative miRNAs belonging to 25 different families were characterized from fennel in this study. Subsequently, employing the psRNATarget tool, a total of 67 different candidate target transcripts for the characterized fennel miRNAs were predicted. Additionally, the expression patterns of six selected fennel miRNAs (i.e. fvu-miR156a, fvu-miR162a-3p, fvu-miR166a-3p, fvu-miR167a-5p, fvu-miR171a-3p, and fvu-miR408-3p) were analyzed under salinity stress conditions via qPCR. This article holds notable significance as it identifies not only 40 putative miRNAs in fennel, a non-model plant, but also pioneers the analysis of their expression under salinity stress conditions.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2361174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Foeniculum vulgare Mill. commonly known as fennel, is a globally recognized aromatic medicinal plant and culinary herb with widespread popularity due to its antimicrobial, antioxidant, carminative, and diuretic properties, among others. Although the phenotypic effects of salinity stress have been previously explored in fennel, the molecular mechanisms underlying responses to elevated salinity in this plant remain elusive. MicroRNAs (miRNAs) are tiny, endogenous, and extensively conserved non-coding RNAs (ncRNAs) typically ranging from 20 to 24 nucleotides (nt) in length that play a major role in a myriad of biological functions. In fact, a number of miRNAs have been extensively associated with responses to abiotic stress in plants. Consequently, employing computational methodologies and rigorous filtering criteria, 40 putative miRNAs belonging to 25 different families were characterized from fennel in this study. Subsequently, employing the psRNATarget tool, a total of 67 different candidate target transcripts for the characterized fennel miRNAs were predicted. Additionally, the expression patterns of six selected fennel miRNAs (i.e. fvu-miR156a, fvu-miR162a-3p, fvu-miR166a-3p, fvu-miR167a-5p, fvu-miR171a-3p, and fvu-miR408-3p) were analyzed under salinity stress conditions via qPCR. This article holds notable significance as it identifies not only 40 putative miRNAs in fennel, a non-model plant, but also pioneers the analysis of their expression under salinity stress conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盐度胁迫下茴香叶组织中微小RNA的鉴定和表达谱分析。
茴香(Foeniculum vulgare Mill.)俗称茴香,是一种全球公认的芳香药用植物和烹饪草本植物,因其具有抗菌、抗氧化、催眠和利尿等特性而广受欢迎。虽然之前已经对茴香盐度胁迫的表型效应进行了研究,但这种植物对盐度升高的反应的分子机制仍然难以捉摸。微小核糖核酸(miRNA)是一种微小、内源性和广泛保守的非编码核糖核酸(ncRNA),长度通常在 20 到 24 个核苷酸(nt)之间,在无数生物功能中发挥着重要作用。事实上,许多 miRNA 与植物对非生物胁迫的反应有着广泛的联系。因此,本研究采用计算方法和严格的筛选标准,对茴香中隶属于 25 个不同家族的 40 个假定 miRNA 进行了表征。随后,利用 psRNATarget 工具,预测了茴香 miRNAs 的 67 个候选靶转录本。此外,研究人员还通过 qPCR 分析了盐度胁迫条件下茴香 miRNA 的表达模式(即 fvu-miR156a、fvu-miR162a-3p、fvu-miR166a-3p、fvu-miR167a-5p、fvu-miR171a-3p 和 fvu-miR408-3p)。这篇文章不仅确定了茴香这种非模式植物中的 40 个推定 miRNA,而且开创了在盐度胁迫条件下分析这些 miRNA 表达的先河,因而具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band. Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana. Cold priming on pathogen susceptibility in the Arabidopsis eds1 mutant background requires a functional stromal Ascorbate Peroxidase. Editorial: plant-microbial symbiosis toward sustainable food security. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1