{"title":"Automated HIV Case Identification from the MIMIC-IV Database.","authors":"Kai Jiang, Tru Cao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic HIV phenotyping is needed for HIV research based on electronic health records (EHRs). MIMIC-IV, an extension of MIMIC-III, contains more than 520,000 hospital admissions and has become a valuable EHR database for secondary medical research. However, there was no prior phenotyping algorithm to extract HIV cases from MIMIC-IV, which requires a comprehensive knowledge of the database. Moreover, previous HIV phenotyping algorithms did not consider the new HIV-1/HIV-2 antibody differentiation immunoassay tests that MIMIC-IV contains. Our work provided insight into the structure and data elements in MIMIC-IV and proposed a new HIV phenotyping algorithm to fill in these gaps. The results included MIMIC-IV's data tables and elements used, 1,781 and 1,843 HIV cases from MIMIC-IV's versions 0.4 and 2.1, respectively, and summary statistics of these two HIV case cohorts. They could be used for the development of statistical and machine learning models in future studies about the disease.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"555-564"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic HIV phenotyping is needed for HIV research based on electronic health records (EHRs). MIMIC-IV, an extension of MIMIC-III, contains more than 520,000 hospital admissions and has become a valuable EHR database for secondary medical research. However, there was no prior phenotyping algorithm to extract HIV cases from MIMIC-IV, which requires a comprehensive knowledge of the database. Moreover, previous HIV phenotyping algorithms did not consider the new HIV-1/HIV-2 antibody differentiation immunoassay tests that MIMIC-IV contains. Our work provided insight into the structure and data elements in MIMIC-IV and proposed a new HIV phenotyping algorithm to fill in these gaps. The results included MIMIC-IV's data tables and elements used, 1,781 and 1,843 HIV cases from MIMIC-IV's versions 0.4 and 2.1, respectively, and summary statistics of these two HIV case cohorts. They could be used for the development of statistical and machine learning models in future studies about the disease.