An Explainable Artificial Intelligence-enabled ECG Framework for the Prediction of Subclinical Coronary Atherosclerosis.

Changho Han, Dukyong Yoon
{"title":"An Explainable Artificial Intelligence-enabled ECG Framework for the Prediction of Subclinical Coronary Atherosclerosis.","authors":"Changho Han, Dukyong Yoon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary artery calcium (CAC) as assessed by computed tomography (CT) is a marker of subclinical coronary atherosclerosis. However, routine application of CAC scoring via CT is limited by high costs and accessibility. An electrocardiogram (ECG) is a widely-used, sensitive, cost-effective, non-invasive, and radiation-free diagnostic tool. Considering this, if artificial intelligence (AI)-enabled electrocardiograms (ECGs) could opportunistically detect CAC, it would be particularly beneficial for the asymptomatic or subclinical populations, acting as an initial screening measure, paving the way for further confirmatory tests and preventive strategies, a step ahead of conventional practices. With this aim, we developed an AI-enabled ECG framework that not only predicts a CAC score ≥400 but also offers a visual explanation of the associated potential morphological ECG changes, and tested its efficacy on individuals undergoing health checkups, a group primarily comprising healthy or subclinical individuals. To ensure broader applicability, we performed external validation at a separate institution.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coronary artery calcium (CAC) as assessed by computed tomography (CT) is a marker of subclinical coronary atherosclerosis. However, routine application of CAC scoring via CT is limited by high costs and accessibility. An electrocardiogram (ECG) is a widely-used, sensitive, cost-effective, non-invasive, and radiation-free diagnostic tool. Considering this, if artificial intelligence (AI)-enabled electrocardiograms (ECGs) could opportunistically detect CAC, it would be particularly beneficial for the asymptomatic or subclinical populations, acting as an initial screening measure, paving the way for further confirmatory tests and preventive strategies, a step ahead of conventional practices. With this aim, we developed an AI-enabled ECG framework that not only predicts a CAC score ≥400 but also offers a visual explanation of the associated potential morphological ECG changes, and tested its efficacy on individuals undergoing health checkups, a group primarily comprising healthy or subclinical individuals. To ensure broader applicability, we performed external validation at a separate institution.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测亚临床冠状动脉粥样硬化的可解释人工智能心电图框架。
通过计算机断层扫描(CT)评估的冠状动脉钙化(CAC)是亚临床冠状动脉粥样硬化的标志。然而,通过 CT 进行 CAC 评分的常规应用受到高成本和可及性的限制。心电图(ECG)是一种广泛使用、灵敏度高、成本效益高、无创伤、无辐射的诊断工具。有鉴于此,如果人工智能(AI)支持的心电图(ECG)能适时检测出 CAC,那么它将特别有益于无症状或亚临床人群,可作为初步筛查措施,为进一步的确诊测试和预防策略铺平道路,比传统做法更进一步。为此,我们开发了一个人工智能心电图框架,它不仅能预测 CAC 评分≥400,还能对相关的潜在心电图形态学变化提供可视化解释,并在接受健康检查的人群(主要包括健康或亚临床人群)中测试了其有效性。为了确保更广泛的适用性,我们在另外一家机构进行了外部验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment. Comparative Analysis of Fusion Strategies for Imaging and Non-imaging Data - Use-case of Hospital Discharge Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1