Weishen Pan, Chang Su, Jacqueline R M A Maasch, Kun Chen, Claire Henchcliffe, Fei Wang
{"title":"Learning Phenotypic Associations for Parkinson's Disease with Longitudinal Clinical Records.","authors":"Weishen Pan, Chang Su, Jacqueline R M A Maasch, Kun Chen, Claire Henchcliffe, Fei Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is associated with multiple clinical motor and non-motor manifestations. Understanding of PD etiologies has been informed by a growing number of genetic mutations and various fluid-based and brain imaging biomarkers. However, the mechanisms underlying its varied phenotypic features remain elusive. The present work introduces a data-driven approach for generating phenotypic association graphs for PD cohorts. Data collected by the Parkinson's Progression Markers Initiative (PPMI), the Parkinson's Disease Biomarkers Program (PDBP), and the Fox Investigation for New Discovery of Biomarkers (BioFIND) were analyzed by this approach to identify heterogeneous and longitudinal phenotypic associations that may provide insight into the pathology of this complex disease. Findings based on the phenotypic association graphs could improve understanding of longitudinal PD pathologies and how these relate to patient symptomology.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"374-383"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is associated with multiple clinical motor and non-motor manifestations. Understanding of PD etiologies has been informed by a growing number of genetic mutations and various fluid-based and brain imaging biomarkers. However, the mechanisms underlying its varied phenotypic features remain elusive. The present work introduces a data-driven approach for generating phenotypic association graphs for PD cohorts. Data collected by the Parkinson's Progression Markers Initiative (PPMI), the Parkinson's Disease Biomarkers Program (PDBP), and the Fox Investigation for New Discovery of Biomarkers (BioFIND) were analyzed by this approach to identify heterogeneous and longitudinal phenotypic associations that may provide insight into the pathology of this complex disease. Findings based on the phenotypic association graphs could improve understanding of longitudinal PD pathologies and how these relate to patient symptomology.