An Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditions

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Radioengineering Pub Date : 2024-06-01 DOI:10.13164/re.2024.0322
Changhua Yao, LI Yang, Yufan Chen, Kaixin Cheng
{"title":"An Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditions","authors":"Changhua Yao, LI Yang, Yufan Chen, Kaixin Cheng","doi":"10.13164/re.2024.0322","DOIUrl":null,"url":null,"abstract":". Accurate identification of jamming patterns is a crucial decision-making basis for anti-jamming in wireless communication systems. Current works still face challenges in fully considering the substantial influence of environmental noise on identification performance. To address the issue, this paper proposes an automatic threshold denoising-based deep learning model. The proposed method aims to mitigate the impact of noise on recognition performance within the feature space. Considering the challenges posed by non-linear transformations in deep denoising, a shallow denoising approach based on deep learning is proposed. By constructing a dataset of 12 jamming patterns under noisy conditions, the proposed method exhibits excellent recognition performance and maintains a low computational cost.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2024.0322","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

. Accurate identification of jamming patterns is a crucial decision-making basis for anti-jamming in wireless communication systems. Current works still face challenges in fully considering the substantial influence of environmental noise on identification performance. To address the issue, this paper proposes an automatic threshold denoising-based deep learning model. The proposed method aims to mitigate the impact of noise on recognition performance within the feature space. Considering the challenges posed by non-linear transformations in deep denoising, a shallow denoising approach based on deep learning is proposed. By constructing a dataset of 12 jamming patterns under noisy conditions, the proposed method exhibits excellent recognition performance and maintains a low computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声条件下干扰模式识别的智能去噪方法
.准确识别干扰模式是无线通信系统抗干扰的重要决策依据。目前的研究在充分考虑环境噪声对识别性能的巨大影响方面仍面临挑战。针对这一问题,本文提出了一种基于阈值去噪的自动深度学习模型。该方法旨在减轻特征空间内噪声对识别性能的影响。考虑到深度去噪中非线性变换带来的挑战,本文提出了一种基于深度学习的浅层去噪方法。通过构建一个包含 12 种噪声条件下干扰模式的数据集,所提出的方法表现出卓越的识别性能,并保持了较低的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
期刊最新文献
Test Evaluation Method for Second-order Intermodulation False Alarm Interference Performance of the User in the TDD NOMA Cellular Networks Enabling FFR An Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditions Reconstruction of Mixed Boundary Objects and Classification Using Deep Learning and Linear Sampling Method Coverless Steganography Based on Low Similarity Feature Selection in DCT Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1