Persistent geometry-topology descriptor for porous structure retrieval based on Heat Kernel Signature

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2024-06-01 DOI:10.1016/j.gmod.2024.101219
Peisheng Zhuo , Zitong He , Hongwei Lin
{"title":"Persistent geometry-topology descriptor for porous structure retrieval based on Heat Kernel Signature","authors":"Peisheng Zhuo ,&nbsp;Zitong He ,&nbsp;Hongwei Lin","doi":"10.1016/j.gmod.2024.101219","DOIUrl":null,"url":null,"abstract":"<div><p>Porous structures are essential in a variety of fields such as materials science and chemistry. To retrieve porous materials efficiently, novel descriptors are required to quantify the geometric and topological features. In this paper, we present a novel framework to create a descriptor that incorporates both topological and geometric information of a porous structure. To capture geometric information, we keep track of the <span><math><mrow><mi>b</mi><mi>i</mi><mi>r</mi><mi>t</mi><mi>h</mi><mspace></mspace><mspace></mspace><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi></mrow></math></span> and <span><math><mrow><mi>d</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>h</mi><mspace></mspace><mspace></mspace><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi></mrow></math></span> of the <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>t</mi><mspace></mspace><mi>f</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi></mrow></math></span>s of a real-valued function on the surface that evolves with a parameter. Then, we generate the corresponding <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>t</mi><mspace></mspace><mspace></mspace><mi>f</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi><mspace></mspace><mspace></mspace><mi>d</mi><mi>i</mi><mi>a</mi><mi>g</mi><mi>r</mi><mi>a</mi><mi>m</mi></mrow></math></span> (<span><math><mrow><mi>D</mi><mi>g</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>P</mi><mi>F</mi></mrow></msub></mrow></math></span>) and convert it into a vector called <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mspace></mspace><mspace></mspace><mi>f</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi><mspace></mspace><mspace></mspace><mi>d</mi><mi>e</mi><mi>s</mi><mi>c</mi><mi>r</mi><mi>i</mi><mi>p</mi><mi>t</mi><mi>o</mi><mi>r</mi></mrow></math></span> (PFD). To extract topological information, we sample points from the pore surface and compute the corresponding persistence diagram, which is then transformed into the Persistence B-Spline Grids (PBSG). Our proposed descriptor, namely <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>t</mi><mspace></mspace><mspace></mspace><mi>g</mi><mi>e</mi><mi>o</mi><mi>m</mi><mi>e</mi><mi>t</mi><mi>r</mi><mi>y</mi><mo>−</mo><mi>t</mi><mi>o</mi><mi>p</mi><mi>o</mi><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi><mspace></mspace><mspace></mspace><mi>d</mi><mi>e</mi><mi>s</mi><mi>c</mi><mi>r</mi><mi>i</mi><mi>p</mi><mi>t</mi><mi>o</mi><mi>r</mi></mrow></math></span> (PGTD), is obtained by concatenating PFD with PBSG. In our experiments, we use the heat kernel signature (HKS) as the real-valued function to compute the descriptor. We test the method on a synthetic porous dataset and a zeolite dataset and find that it is competitive compared to other descriptors based on HKS and advanced topological descriptors.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101219"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000079/pdfft?md5=499cdacea6ff6d72e1f6c905040f66c2&pid=1-s2.0-S1524070324000079-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000079","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Porous structures are essential in a variety of fields such as materials science and chemistry. To retrieve porous materials efficiently, novel descriptors are required to quantify the geometric and topological features. In this paper, we present a novel framework to create a descriptor that incorporates both topological and geometric information of a porous structure. To capture geometric information, we keep track of the birthtime and deathtime of the persistentfeatures of a real-valued function on the surface that evolves with a parameter. Then, we generate the corresponding persistentfeaturediagram (DgmPF) and convert it into a vector called persistencefeaturedescriptor (PFD). To extract topological information, we sample points from the pore surface and compute the corresponding persistence diagram, which is then transformed into the Persistence B-Spline Grids (PBSG). Our proposed descriptor, namely persistentgeometrytopologydescriptor (PGTD), is obtained by concatenating PFD with PBSG. In our experiments, we use the heat kernel signature (HKS) as the real-valued function to compute the descriptor. We test the method on a synthetic porous dataset and a zeolite dataset and find that it is competitive compared to other descriptors based on HKS and advanced topological descriptors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热核特征的多孔结构检索持久几何拓扑描述符
多孔结构在材料科学和化学等多个领域都至关重要。为了有效检索多孔材料,需要新颖的描述符来量化几何和拓扑特征。在本文中,我们提出了一个新颖的框架,用于创建一个同时包含多孔结构拓扑和几何信息的描述符。为了捕捉几何信息,我们跟踪表面上随参数变化的实值函数的持久特征的诞生时间和消亡时间。然后,我们生成相应的持久特征图(DgmPF),并将其转换为称为持久特征描述器(PFD)的向量。为了提取拓扑信息,我们从孔隙表面采样点并计算相应的持久图,然后将其转换为持久 B 样条网格(PBSG)。我们提出的描述符,即持久几何拓扑描述符(PGTD),是通过将 PFD 与 PBSG 连接得到的。在实验中,我们使用热核特征(HKS)作为实值函数来计算描述符。我们在一个合成多孔数据集和一个沸石数据集上测试了该方法,发现与其他基于 HKS 的描述符和高级拓扑描述符相比,该方法具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space A detail-preserving method for medial mesh computation in triangular meshes Exploring the neural landscape: Visual analytics of neuron activation in large language models with NeuronautLLM GarTemFormer: Temporal transformer-based for optimizing virtual garment animation Building semantic segmentation from large-scale point clouds via primitive recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1