{"title":"Persistent geometry-topology descriptor for porous structure retrieval based on Heat Kernel Signature","authors":"Peisheng Zhuo , Zitong He , Hongwei Lin","doi":"10.1016/j.gmod.2024.101219","DOIUrl":null,"url":null,"abstract":"<div><p>Porous structures are essential in a variety of fields such as materials science and chemistry. To retrieve porous materials efficiently, novel descriptors are required to quantify the geometric and topological features. In this paper, we present a novel framework to create a descriptor that incorporates both topological and geometric information of a porous structure. To capture geometric information, we keep track of the <span><math><mrow><mi>b</mi><mi>i</mi><mi>r</mi><mi>t</mi><mi>h</mi><mspace></mspace><mspace></mspace><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi></mrow></math></span> and <span><math><mrow><mi>d</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>h</mi><mspace></mspace><mspace></mspace><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi></mrow></math></span> of the <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>t</mi><mspace></mspace><mi>f</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi></mrow></math></span>s of a real-valued function on the surface that evolves with a parameter. Then, we generate the corresponding <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>t</mi><mspace></mspace><mspace></mspace><mi>f</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi><mspace></mspace><mspace></mspace><mi>d</mi><mi>i</mi><mi>a</mi><mi>g</mi><mi>r</mi><mi>a</mi><mi>m</mi></mrow></math></span> (<span><math><mrow><mi>D</mi><mi>g</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>P</mi><mi>F</mi></mrow></msub></mrow></math></span>) and convert it into a vector called <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mspace></mspace><mspace></mspace><mi>f</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi><mspace></mspace><mspace></mspace><mi>d</mi><mi>e</mi><mi>s</mi><mi>c</mi><mi>r</mi><mi>i</mi><mi>p</mi><mi>t</mi><mi>o</mi><mi>r</mi></mrow></math></span> (PFD). To extract topological information, we sample points from the pore surface and compute the corresponding persistence diagram, which is then transformed into the Persistence B-Spline Grids (PBSG). Our proposed descriptor, namely <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>t</mi><mspace></mspace><mspace></mspace><mi>g</mi><mi>e</mi><mi>o</mi><mi>m</mi><mi>e</mi><mi>t</mi><mi>r</mi><mi>y</mi><mo>−</mo><mi>t</mi><mi>o</mi><mi>p</mi><mi>o</mi><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi><mspace></mspace><mspace></mspace><mi>d</mi><mi>e</mi><mi>s</mi><mi>c</mi><mi>r</mi><mi>i</mi><mi>p</mi><mi>t</mi><mi>o</mi><mi>r</mi></mrow></math></span> (PGTD), is obtained by concatenating PFD with PBSG. In our experiments, we use the heat kernel signature (HKS) as the real-valued function to compute the descriptor. We test the method on a synthetic porous dataset and a zeolite dataset and find that it is competitive compared to other descriptors based on HKS and advanced topological descriptors.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101219"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000079/pdfft?md5=499cdacea6ff6d72e1f6c905040f66c2&pid=1-s2.0-S1524070324000079-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000079","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Porous structures are essential in a variety of fields such as materials science and chemistry. To retrieve porous materials efficiently, novel descriptors are required to quantify the geometric and topological features. In this paper, we present a novel framework to create a descriptor that incorporates both topological and geometric information of a porous structure. To capture geometric information, we keep track of the and of the s of a real-valued function on the surface that evolves with a parameter. Then, we generate the corresponding () and convert it into a vector called (PFD). To extract topological information, we sample points from the pore surface and compute the corresponding persistence diagram, which is then transformed into the Persistence B-Spline Grids (PBSG). Our proposed descriptor, namely (PGTD), is obtained by concatenating PFD with PBSG. In our experiments, we use the heat kernel signature (HKS) as the real-valued function to compute the descriptor. We test the method on a synthetic porous dataset and a zeolite dataset and find that it is competitive compared to other descriptors based on HKS and advanced topological descriptors.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.