3D data augmentation and dual-branch model for robust face forgery detection

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2025-02-04 DOI:10.1016/j.gmod.2025.101255
Changshuang Zhou , Frederick W.B. Li , Chao Song , Dong Zheng , Bailin Yang
{"title":"3D data augmentation and dual-branch model for robust face forgery detection","authors":"Changshuang Zhou ,&nbsp;Frederick W.B. Li ,&nbsp;Chao Song ,&nbsp;Dong Zheng ,&nbsp;Bailin Yang","doi":"10.1016/j.gmod.2025.101255","DOIUrl":null,"url":null,"abstract":"<div><div>We propose Dual-Branch Network (DBNet), a novel deepfake detection framework that addresses key limitations of existing works by jointly modeling 3D-temporal and fine-grained texture representations. Specifically, we aim to investigate how to (1) capture dynamic properties and spatial details in a unified model and (2) identify subtle inconsistencies beyond localized artifacts through temporally consistent modeling. To this end, DBNet extracts 3D landmarks from videos to construct temporal sequences for an RNN branch, while a Vision Transformer analyzes local patches. A Temporal Consistency-aware Loss is introduced to explicitly supervise the RNN. Additionally, a 3D generative model augments training data. Extensive experiments demonstrate our method achieves state-of-the-art performance on benchmarks, and ablation studies validate its effectiveness in generalizing to unseen data under various manipulations and compression.</div></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"138 ","pages":"Article 101255"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070325000025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We propose Dual-Branch Network (DBNet), a novel deepfake detection framework that addresses key limitations of existing works by jointly modeling 3D-temporal and fine-grained texture representations. Specifically, we aim to investigate how to (1) capture dynamic properties and spatial details in a unified model and (2) identify subtle inconsistencies beyond localized artifacts through temporally consistent modeling. To this end, DBNet extracts 3D landmarks from videos to construct temporal sequences for an RNN branch, while a Vision Transformer analyzes local patches. A Temporal Consistency-aware Loss is introduced to explicitly supervise the RNN. Additionally, a 3D generative model augments training data. Extensive experiments demonstrate our method achieves state-of-the-art performance on benchmarks, and ablation studies validate its effectiveness in generalizing to unseen data under various manipulations and compression.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
3D data augmentation and dual-branch model for robust face forgery detection Quasi-interpolation projectors for subdivision function spaces Efficient alternating and joint distance minimization methods for adaptive spline surface fitting Discrete variable 3D models in Computer extended Descriptive Geometry (CeDG): Building of polygonal sheet-metal elbows and comparison against CAD Lightweight deep learning method for end-to-end point cloud registration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1