Protein target similarity is positive predictor of in vitro antipathogenic activity: a drug repurposing strategy for Plasmodium falciparum

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-05-30 DOI:10.1186/s13321-024-00856-7
Reagan M. Mogire, Silviane A. Miruka, Dennis W. Juma, Case W. McNamara, Ben Andagalu, Jeremy N. Burrows, Elodie Chenu, James Duffy, Bernhards R. Ogutu, Hoseah M. Akala
{"title":"Protein target similarity is positive predictor of in vitro antipathogenic activity: a drug repurposing strategy for Plasmodium falciparum","authors":"Reagan M. Mogire,&nbsp;Silviane A. Miruka,&nbsp;Dennis W. Juma,&nbsp;Case W. McNamara,&nbsp;Ben Andagalu,&nbsp;Jeremy N. Burrows,&nbsp;Elodie Chenu,&nbsp;James Duffy,&nbsp;Bernhards R. Ogutu,&nbsp;Hoseah M. Akala","doi":"10.1186/s13321-024-00856-7","DOIUrl":null,"url":null,"abstract":"<div><p>Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds’ activity and identify their potential targets across diverse organisms. In this study, we aimed to assess the antiplasmodial activity of compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library using in vitro and bioinformatics approaches. We assessed the in vitro antiplasmodial activity of the compounds using blood-stage and liver-stage drug susceptibility assays. We used protein sequences of known targets of the ReFRAME compounds with high antiplasmodial activity (EC<sub>50</sub> &lt; 10 uM) to conduct a protein-pairwise search to identify similar <i>Plasmodium falciparum</i> 3D7 proteins (from PlasmoDB) using NCBI protein BLAST. We further assessed the association between the compounds' in vitro antiplasmodial activity and level of similarity between their known and predicted <i>P. falciparum</i> target proteins using simple linear regression analyses. BLAST analyses revealed 735 <i>P. falciparum</i> proteins that were similar to the 226 known protein targets associated with the ReFRAME compounds. Antiplasmodial activity of the compounds was positively associated with the degree of similarity between the compounds’ known targets and predicted <i>P. falciparum</i> protein targets (percentage identity, E value, and bit score), the number of the predicted <i>P. falciparum</i> targets, and their respective mutagenesis index and fitness scores (R<sup>2</sup> between 0.066 and 0.92, <i>P</i> &lt; 0.05). Compounds predicted to target essential <i>P. falciparum</i> proteins or those with a druggability index of 1 showed the highest antiplasmodial activity.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00856-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00856-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds’ activity and identify their potential targets across diverse organisms. In this study, we aimed to assess the antiplasmodial activity of compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library using in vitro and bioinformatics approaches. We assessed the in vitro antiplasmodial activity of the compounds using blood-stage and liver-stage drug susceptibility assays. We used protein sequences of known targets of the ReFRAME compounds with high antiplasmodial activity (EC50 < 10 uM) to conduct a protein-pairwise search to identify similar Plasmodium falciparum 3D7 proteins (from PlasmoDB) using NCBI protein BLAST. We further assessed the association between the compounds' in vitro antiplasmodial activity and level of similarity between their known and predicted P. falciparum target proteins using simple linear regression analyses. BLAST analyses revealed 735 P. falciparum proteins that were similar to the 226 known protein targets associated with the ReFRAME compounds. Antiplasmodial activity of the compounds was positively associated with the degree of similarity between the compounds’ known targets and predicted P. falciparum protein targets (percentage identity, E value, and bit score), the number of the predicted P. falciparum targets, and their respective mutagenesis index and fitness scores (R2 between 0.066 and 0.92, P < 0.05). Compounds predicted to target essential P. falciparum proteins or those with a druggability index of 1 showed the highest antiplasmodial activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质靶点相似性是体外抗致病活性的积极预测因素:恶性疟原虫药物再利用战略
药物研发是一个复杂而昂贵的过程。现有药物和活性化合物的再利用为开发治疗各种疾病的新疗法提供了一条可行的途径。通过利用公开的生物医学信息,可以预测化合物的活性并确定其在不同生物体中的潜在靶点。在本研究中,我们旨在利用体外和生物信息学方法,评估 "再利用、重点抢救和加速医药化学(ReFRAME)"文库中化合物的抗疟活性。我们利用血液阶段和肝脏阶段药敏试验评估了化合物的体外抗疟活性。我们利用具有高抗疟活性(EC50 < 10 uM)的 ReFRAME 化合物已知靶标的蛋白质序列,使用 NCBI 蛋白质 BLAST 进行蛋白质配对搜索,以确定类似的恶性疟原虫 3D7 蛋白质(来自 PlasmoDB)。我们使用简单的线性回归分析进一步评估了化合物的体外抗疟活性与其已知和预测的恶性疟原虫靶蛋白之间相似程度的关联。BLAST 分析显示有 735 个恶性疟原虫蛋白与 ReFRAME 化合物的 226 个已知靶蛋白相似。化合物的抗疟活性与化合物的已知靶标和预测的恶性疟原虫蛋白靶标之间的相似程度(同一性百分比、E 值和比特分数)、预测的恶性疟原虫靶标数量以及各自的诱变指数和适应性分数呈正相关(R2 在 0.066 和 0.92 之间,P < 0.05)。预测靶向恶性疟原虫基本蛋白的化合物或可药性指数为 1 的化合物显示出最高的抗疟活性。这是首次证明化合物体外抗病原活性与不同物种靶点相似性之间相关性的研究。我们的研究结果表明,通过预测化合物的活性及其在不同生物体内的潜在靶点,利用蛋白质-靶点相似性可能会加快许多疾病的药物再利用过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
One size does not fit all: revising traditional paradigms for assessing accuracy of QSAR models used for virtual screening Chemical space as a unifying theme for chemistry Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1