{"title":"Lambda-Cyhalothrin induced behavioural, neurotoxic and oxidative stress on vertebrate model Danio rerio (Hamilton-Buchanan 1822).","authors":"Darshana Sharma, Raktim Sarmah, Rimon Sarmah, Hemanta Pokhrel, Sarada Kanta Bhagabati, Dipak Kumar Sarma, Arnab Narayan Patowary, Karishma Mili","doi":"10.1007/s10646-024-02763-x","DOIUrl":null,"url":null,"abstract":"<p><p>λ-cyhalothrin, a synthetic type II pyrethroid, has become increasingly popular for control of aphids, butterfly larvae, and beetles, replacing other agricultural chemicals. As a result of which, residues of this synthetic pesticide are being reported across the globe in natural water, which poses a serious threat to aquatic life. Therefore, the present study was designed to understand the toxicity effects of λ-cyhalothrin on behaviour, oxidative stress and neurotoxicity in a vertebrate aquatic model, zebrafish (Danio rerio). The fish were exposed to 0.129, 0.194 and 0.388 µg/L corresponding to 5%, 10% and 20% of 96hLC<sub>50</sub> (1.94 µg/L) for 28 days. Upon exposure to the highest concentration (0.388 µg/L), the test animal exhibited significant alterations in behavioural patterns like number of entries to the top zone (n), decrease in average speed (m/s) and decrease in time spent in top zone (s). Moreover, the shoaling test demonstrated a significant decrease (p < 0.05) in the relative time spent by the tested fish (%) near the stimulus fish. The change in behavioural alterations might be linked to a significant decrease (p < 0.05) in the brain acetylcholine esterase activity. Furthermore, the present study also illustrates oxidative stress exerted by λ-cyhalothrin through an increase in the production of reactive oxygen species, which is again clearly depicted by a significant increase (p < 0.05) in Superoxide dismutase, Catalase and Glutathione peroxidase activities. Overall, the present study systematically demonstrates the chronic effects of λ-cyhalothrin on adult fish behaviour and physiology, which will contribute to assessing the risks of λ-cyhalothrin to organismal health.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"663-676"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02763-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
λ-cyhalothrin, a synthetic type II pyrethroid, has become increasingly popular for control of aphids, butterfly larvae, and beetles, replacing other agricultural chemicals. As a result of which, residues of this synthetic pesticide are being reported across the globe in natural water, which poses a serious threat to aquatic life. Therefore, the present study was designed to understand the toxicity effects of λ-cyhalothrin on behaviour, oxidative stress and neurotoxicity in a vertebrate aquatic model, zebrafish (Danio rerio). The fish were exposed to 0.129, 0.194 and 0.388 µg/L corresponding to 5%, 10% and 20% of 96hLC50 (1.94 µg/L) for 28 days. Upon exposure to the highest concentration (0.388 µg/L), the test animal exhibited significant alterations in behavioural patterns like number of entries to the top zone (n), decrease in average speed (m/s) and decrease in time spent in top zone (s). Moreover, the shoaling test demonstrated a significant decrease (p < 0.05) in the relative time spent by the tested fish (%) near the stimulus fish. The change in behavioural alterations might be linked to a significant decrease (p < 0.05) in the brain acetylcholine esterase activity. Furthermore, the present study also illustrates oxidative stress exerted by λ-cyhalothrin through an increase in the production of reactive oxygen species, which is again clearly depicted by a significant increase (p < 0.05) in Superoxide dismutase, Catalase and Glutathione peroxidase activities. Overall, the present study systematically demonstrates the chronic effects of λ-cyhalothrin on adult fish behaviour and physiology, which will contribute to assessing the risks of λ-cyhalothrin to organismal health.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.